基于曲面形態(tài)學(xué)的輕度認(rèn)知障礙腦結(jié)構(gòu)特性研究
[Abstract]:The brain is the most important and complex organ in human beings. It is of profound significance to study the structural characteristics and working mechanism of the brain to protect the health of the brain and better develop the potential of the brain. Mild cognitive impairment (MCI) is considered to be a transitional form between normal elderly (NC) and Alzheimer's disease (AD) with cognitive impairment. Because AD is irreversible, it is important to study the mechanism of brain structure changes in MCI to reduce the incidence and mortality of AD.
Surface-based morphology is a new method of brain morphology in recent years. It has been proved by more and more studies that it has a unique accuracy and sensitivity in the measurement of cerebral cortex (especially in the sulcus area). Therefore, this paper combines magnetic resonance image data and surface-based morphology to study MCI in many aspects, hoping to deepen the understanding of the pathogenesis of MCI and its impact on brain structure, and better realize the early prevention and treatment of Alzheimer's disease. The contributions are as follows:
1. In view of the fact that there are not many longitudinal tracking studies on brain structural abnormalities in MCI population at present, the longitudinal tracking analysis of brain atrophy patterns in MCI population is first proposed by using surface-based brain morphology. After digitizing the structural magnetic resonance images of MCI and NC population, the curved surface of cerebral cortex is obtained. Then we compared the cortical thickness of the MCI and NC populations over a two-year period, analyzed the difference in the rate of cortical thickness atrophy and the correlation between the thickness atrophy and the score of the Simple Intelligent State Examination (MMSE). The results showed that there were significant thinning abnormalities in MCI population relative to NC in some brain areas such as temporal lobe, insula and parahippocampal gyrus. The average thickness of these abnormal brain areas showed a significant linear downward trend with time and the rate was higher than that of NC population, and the correlation results showed that these abnormal brain areas were thinner than NC population. Atrophy is directly related to the decline of clinical manifestations.
2. Since there is no research on using cortical thickness to construct MCI brain network, we constructed MCI and NC brain network using the average thickness of the brain area for the first time, and found significant differences in small-world attributes between the two groups. Then we constructed the structured brain network based on the partial correlation coefficient matrix of brain interval thickness. We compared the differences between the two groups in average clustering coefficient, average shortest path length, hub node concentration and the correlation of brain interval connectivity using permutation test and Fisher Z transform. The clustering coefficients and shortest path lengths were larger in all sparsities, and the differences were significant in some sparsities. At the same time, there were also cases of increasing and missing hub nodes and increasing and decreasing brain region connectivity in MCI brain networks. The results of data or gray matter volume building MCI brain networks are more consistent, further demonstrating that MCI does, to some extent, alter the mechanism by which the brain processes information.
3. In order to combine the study of brain morphology with the prediction of early clinical diseases, and to test the reliability and accuracy of cortical thickness, we propose a feature selection method based on cortical thickness, which is applied to the classification of transformed mild cognitive impairment (CMCI) and stable mild cognitive impairment (SMCI). Firstly, the statistical analysis method was used to verify the significant difference of thickness between NC, CMCI and SMCI groups at baseline time. Thickness trend was NCSMCICMCI, which provided a basis for pattern classification using thicknesses data. Then the average thicknesses of 78 brain regions were calculated and compared between the two groups. For feature vectors of pattern classification, we compare the effects of two feature selection methods on classification results. One is based on the significance of the difference in brain area thickness, the other is based on the feature ranking coefficient obtained by the joint recursive feature removal (RFE) algorithm. Radial Basis Function (RBF) was selected as the kernel function of Support Vector Machine (SVM) and the grid parameters were optimized. The classification results showed that it was feasible to predict the transformation of mild cognitive impairment by using the average brain area thickness. The classification accuracy was up to 76.77% under the left-one cross validation.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:R445.2;R749.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莊振華;王年;李學(xué)俊;梁棟;王繼;;癌癥基因表達(dá)數(shù)據(jù)的熵度量分類方法[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
2 陳樂(lè);王年;蘇亮亮;王蕊平;;基于鄰接譜主分量分析的腫瘤分類方法[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
3 葉愛(ài)霞;王年;蘇亮亮;;基于非負(fù)矩陣分解和Normal_Matrix的腫瘤基因分類[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
4 許高程;張文君;王衛(wèi)紅;;支持向量機(jī)技術(shù)在遙感影像滑坡體提取中的應(yīng)用[J];安徽農(nóng)業(yè)科學(xué);2009年06期
5 管翠萍;;藥物靶標(biāo)G蛋白偶聯(lián)受體的識(shí)別預(yù)測(cè)[J];安徽農(nóng)業(yè)科學(xué);2010年24期
6 劉婷婷;;基于支持向量機(jī)的水稻紋枯病識(shí)別研究[J];安徽農(nóng)業(yè)科學(xué);2011年28期
7 高闖;王立東;周世宇;;基于支持矢量機(jī)的宮頸細(xì)胞分類[J];遼寧科技大學(xué)學(xué)報(bào);2009年03期
8 張順花;王震寰;張俊祥;沈龍山;張磊;張艷;劉志軍;;大腦中央前溝MRI解剖學(xué)研究及其臨床意義[J];蚌埠醫(yī)學(xué)院學(xué)報(bào);2010年04期
9 汪廷華;田盛豐;黃厚寬;廖年冬;;樣本屬性重要度的支持向量機(jī)方法[J];北京交通大學(xué)學(xué)報(bào);2007年05期
10 牟少敏;田盛豐;尹傳環(huán);;基于協(xié)同聚類的多核學(xué)習(xí)[J];北京交通大學(xué)學(xué)報(bào);2008年02期
相關(guān)會(huì)議論文 前10條
1 ;An effective procedure exploiting unlabeled data to build monitoring system[A];中國(guó)科學(xué)院地質(zhì)與地球物理研究所第11屆(2011年度)學(xué)術(shù)年會(huì)論文集(下)[C];2012年
2 ;A Novel Kernel PCA Support Vector Machine Algorithm with Feature Transition Function[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
3 呂蓬;柳亦兵;馬強(qiáng);魏于凡;;支持向量機(jī)在齒輪智能故障診斷中的應(yīng)用研究[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
4 ;Fault Pattern Recognition of Rolling Bearings Based on Wavelet Packet and Support Vector Machine[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
5 蔣少華;桂衛(wèi)華;陽(yáng)春華;唐朝暉;蔣朝輝;;基于主元分析與支持向量機(jī)的方法及其在密閉鼓風(fēng)爐過(guò)程監(jiān)控診斷中的應(yīng)用[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
6 王海豐;李壯;任洪娥;趙鵬;;基于非下采樣Contourlet變換和SVM的紋理圖像分割算法[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
7 ;Image Classification with Ant Colony Based Support Vector Machine[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)A卷[C];2011年
8 ;A Mixed-Kernel-Based SVR Controller for Biped Robots[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)C卷[C];2011年
9 楊宏軍;宋亦旭;梁偉;賈培發(fā);;基于GLS-PSO的機(jī)器人砂帶磨削軌跡優(yōu)化[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)D卷[C];2011年
10 晉朝勃;胡剛強(qiáng);史廣智;李玉陽(yáng);;一種采用支持向量機(jī)的水中目標(biāo)識(shí)別方法[A];中國(guó)聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2011年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)博士學(xué)位論文 前10條
1 趙瑩;半監(jiān)督支持向量機(jī)學(xué)習(xí)算法研究[D];哈爾濱工程大學(xué);2010年
2 于化龍;基于DNA微陣列數(shù)據(jù)的癌癥分類技術(shù)研究[D];哈爾濱工程大學(xué);2010年
3 殷志偉;基于統(tǒng)計(jì)學(xué)習(xí)理論的分類方法研究[D];哈爾濱工程大學(xué);2009年
4 柏堅(jiān);非線性數(shù)學(xué)地質(zhì)模型研究及在滇東南金礦成礦預(yù)測(cè)中的應(yīng)用[D];中國(guó)地質(zhì)大學(xué)(北京);2010年
5 姚志明;基于步態(tài)觸覺(jué)信息的身份識(shí)別研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
6 章鵬;多尺度特征檢測(cè):方法和應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
7 陳志國(guó);基于群體智能的機(jī)器視覺(jué)的關(guān)鍵技術(shù)研究[D];江南大學(xué);2010年
8 呂寧;基于數(shù)據(jù)驅(qū)動(dòng)的故障診斷模型及算法研究[D];哈爾濱理工大學(xué);2009年
9 張目;高技術(shù)企業(yè)信用風(fēng)險(xiǎn)影響因素及評(píng)價(jià)方法研究[D];電子科技大學(xué);2010年
10 宋國(guó)明;基于提升小波及SVM優(yōu)化的模擬電路智能故障診斷方法研究[D];電子科技大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 朱杰;一種基于聚類的支持向量機(jī)反問(wèn)題求解算法[D];河北大學(xué);2007年
2 李金華;基于SVM的多類文本分類研究[D];山東科技大學(xué);2010年
3 江達(dá)秀;基于HMAX模型的人臉表情識(shí)別研究[D];浙江理工大學(xué);2010年
4 李朋勇;基于全矢高階譜的故障診斷方法及其應(yīng)用研究[D];鄭州大學(xué);2010年
5 劉松;基于OCSVM和主動(dòng)學(xué)習(xí)的DDOS攻擊分布式檢測(cè)系統(tǒng)[D];鄭州大學(xué);2010年
6 方宇;小波支持向量機(jī)在交通流預(yù)測(cè)中的應(yīng)用研究[D];大連理工大學(xué);2010年
7 梁懷志;基于嵌入式的車型分類系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];大連理工大學(xué);2010年
8 李海燕;互信息特征選擇的研究及在代謝組學(xué)中的應(yīng)用[D];大連理工大學(xué);2010年
9 李林;基于可靠性的TBM刀盤輕量化設(shè)計(jì)[D];大連理工大學(xué);2010年
10 嚴(yán)康;基于支持向量機(jī)的特征選擇算法研究[D];大連理工大學(xué);2010年
,本文編號(hào):2239550
本文鏈接:http://sikaile.net/yixuelunwen/fangshe/2239550.html