基于腦電和功能磁共振的3D電視視疲勞評(píng)估方法研究
本文選題:3D電視疲勞 + 主觀評(píng)測(cè); 參考:《南京航空航天大學(xué)》2014年碩士論文
【摘要】:近年來(lái),全球掀起了享受3D視覺(jué)盛宴的狂潮,3D電視已走進(jìn)消費(fèi)者的日常生活,觀看3D電視引起的視疲勞、頭昏、惡心等不良癥狀也引起了人們的重視。本文利用腦電和功能磁共振成像技術(shù)研究了觀看3D電視與腦功能區(qū)變化之間的關(guān)系。主要工作如下: 1、分析腦電信號(hào)α、β、θ、δ四種特征波能量值及(α+θ)/β、α/β、(α+θ)/(α+β)、θ/β四種比值,結(jié)合主觀評(píng)價(jià)結(jié)果,建立了基于β波能量和(α+θ)/β、α/β、(α+θ)/(α+β)、θ/β四個(gè)比值的評(píng)估模型對(duì)觀看3D電視引起的視疲勞進(jìn)行客觀評(píng)價(jià)。 2、為了優(yōu)化基于能量特征值的視疲勞評(píng)估模型,引入功率譜熵和重心頻率,建立了基于功率譜熵和重心頻率的視疲勞評(píng)估模型,該模型準(zhǔn)確率較高。 3、通過(guò)對(duì)實(shí)驗(yàn)過(guò)程中的腦電數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)了觀看3D影視過(guò)程中大腦狀態(tài)由清醒到逐漸疲勞到中度疲勞的過(guò)程,前20分鐘為清醒階段,20~45分鐘視疲勞逐漸增強(qiáng),,40~45分鐘疲勞最嚴(yán)重,達(dá)到中度疲勞,部分被試出現(xiàn)重度疲勞。 4、基于功能磁共振的3D影像視疲勞檢測(cè)。通過(guò)觀看3D/2D影視前后的棋盤(pán)格刺激實(shí)驗(yàn)對(duì)比分析,發(fā)現(xiàn)觀看3D影像后,大腦的激活區(qū)域以及激活體素具有顯著性差異,主要表現(xiàn)在BA8、BA17、BA18及B19區(qū)域,其中BA8(額葉眼動(dòng)區(qū),F(xiàn)EF)表現(xiàn)最為突出,這與基于腦電信號(hào)對(duì)觀看3D電視引起的視疲勞得出的區(qū)域相一致。 上述研究表明,長(zhǎng)時(shí)間觀看3D電視會(huì)造成視疲勞,從而帶來(lái)健康隱患。從觀看3D電視過(guò)程中腦電監(jiān)測(cè)的結(jié)果來(lái)看,建議觀看3D電視的時(shí)間不宜過(guò)長(zhǎng),最好不要超過(guò)40分鐘。本文研究結(jié)果可以為建立健康3D標(biāo)準(zhǔn)提供客觀依據(jù)。
[Abstract]:In recent years, the world enjoy the visual feast of 3D frenzy, 3D TV has entered the daily lives of consumers, watching 3D TV caused visual fatigue, dizziness, nausea and other symptoms also attracted attention. Magnetic resonance imaging studies the relationship between changes in 3D and watch TV brain EEG and function the main work is as follows:
1, analysis of EEG alpha, beta theta, Delta, four kinds of characteristic wave energy value and (alpha + beta / alpha, theta) / (alpha + beta and theta) / (alpha + beta, beta theta) / four ratio, combined with the subjective evaluation results, establish the beta wave energy and based on (alpha + beta theta / alpha / beta), (+ alpha, theta) / (alpha + beta, beta theta) / four ratio evaluation model to evaluate objectively the visual fatigue caused by watching 3D TV.
2, in order to optimize the visual fatigue assessment model based on the energy eigenvalue, a visual fatigue assessment model based on the power spectral entropy and the center of gravity frequency is established by introducing the power spectral entropy and the gravity frequency. The accuracy of the model is relatively high.
3, through analyzing the EEG data in the experiment analysis, found the brain state in the process of watching 3D television to gradually clear to moderate fatigue fatigue, 20 minutes before the conscious stage, 20~45 minutes of visual fatigue gradually increased, the most serious fatigue in 40~45 minutes, reached the degree of fatigue, some of the subjects had severe fatigue.
4, 3D imaging of functional magnetic resonance imaging and visual fatigue detection based on 3D/2D. By watching the checkerboard film analysis before and after experimental stimulation, found that watching 3D images after the activation of brain regions and activated voxels with significant differences, mainly in BA8, BA17, BA18 and B19 area, including BA8 (frontal eye field. FEF) was the most prominent, and the EEG signal based on visual fatigue caused by watching 3D TV that area is consistent.
The research shows that the long time watching 3D TV will cause visual fatigue, so as to bring health risks. From watching 3D TV during EEG monitor results, suggest that watching 3D TV time should not be too long, preferably not more than 40 minutes. The results of this study can provide objective basis for the establishment of health 3D standards.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:R445.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 萬(wàn)柏坤,朱欣,楊春梅,高揚(yáng);ICA去除EEG中眼動(dòng)偽差和工頻干擾方法研究[J];電子學(xué)報(bào);2003年10期
2 鄭華東;于瀛潔;程維明;;三維立體顯示技術(shù)研究新進(jìn)展[J];光學(xué)技術(shù);2008年03期
3 夏丹;;我國(guó)3D電視發(fā)展現(xiàn)狀與消費(fèi)者滿意度分析[J];中國(guó)廣播電視學(xué)刊;2013年06期
4 張佃中;譚小紅;劉昭前;;不同頻段功率譜熵及其在心電分析中的應(yīng)用[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
5 胡淑燕;鄭鋼鐵;;基于EEG頻譜特征的駕駛員疲勞監(jiān)測(cè)研究[J];中國(guó)安全生產(chǎn)科學(xué)技術(shù);2010年03期
6 司剛?cè)?曹暉;張彥斌;馬西奎;;一種基于功率譜重心的自適應(yīng)特征信息提取方法[J];數(shù)據(jù)采集與處理;2008年06期
7 盧英俊;吳海珍;錢(qián)梈;謝飛;;莫扎特奏鳴曲K.448對(duì)腦電功率譜與重心頻率的影響[J];生物物理學(xué)報(bào);2011年02期
8 蘇松,張恒義,鄭筱祥;基于重心頻率和復(fù)雜度分析的大鼠睡眠分期比較[J];中國(guó)藥理學(xué)通報(bào);2003年08期
本文編號(hào):1768676
本文鏈接:http://sikaile.net/yixuelunwen/fangshe/1768676.html