mTOR信號(hào)通路調(diào)控豬瘟病毒復(fù)制的機(jī)制研究
[Abstract]:Classical swine fever (CSF) is a serious infectious disease caused by classical swine fever virus (CSFV), which is characterized by high fever, hemorrhage and immunosuppression. It is an epidemic disease that must be reported by the World Organization for Animal Health (OIE). It has caused tremendous damage to the pig industry in China and even the world. CSFV belongs to the genus Pestivirus of Flaviviridae. It is a single stranded positive-stranded RNA virus. Although the pathogenesis of CSFV has been studied, the mechanism of infection and replication of CSFV in host cells and the pathogenesis of immune escape are still poorly understood. Continuous infection requires the use of key signaling pathways that regulate protein synthesis, energy metabolism, and cell survival and growth in host cells. The mammalian target of rapamycin (mTOR) signaling pathway links the processes from induction energy and growth factors to regulation of cell survival, growth and macromolecule synthesis and metabolism. Infection replication plays an important role in viral replication. However, the relationship between CSFV and mTOR signaling pathway has not been clearly reported. Therefore, this study aims to elucidate the regulation of CSFV on mTOR signaling pathway and the molecular mechanism of mTOR signaling pathway on CSFV replication, providing an explanation for CSFV replication and persistent infection from the perspective of mTOR. In this study, compared with non-CSFV-infected cells, CSFV-infected ST cells significantly inhibited the activation of Akt/mTOR signaling pathway. The inhibition was most significant at 6-24 h, then gradually recovered until 48 h. In order to investigate the effect of Akt/mTOR signaling pathway on CSFV self-replication, we used mTOR inhibitor rapamycin and activator insulin to change the activity of host cell mTOR pathway and infected CSFV, Western-blot and fluorescence. Quantitative PCR and other results showed that rapamycin inhibited cell proliferation but significantly promoted CSFV replication within 24 hours; insulin promoted cell proliferation but significantly inhibited CSFV replication; it is noteworthy that this regulatory trend did not exist at 48 hours; we speculated that CSFV infection inhibited mTOR/S6K1, resulting in S6K1 inducing Akt negative reaction via IRS (insulin receptor). Subsequently, we further investigated the effect of Akt upstream of mTOR on CSFV replication; Akt specific inhibitor (LY294002) was used to inhibit Akt activity; and Akt activator (SC79) was used to activate Akt to infect CSFV. Fluorescence quantitative PCR results showed that it was inhibited compared with untreated ST cells. Akt-producing activity could continuously up-regulate the copy number of CSFV genome within 72 hours, while activation of Akt could continuously decrease the copy number of CSFV genome. These results suggest that the Akt/mTOR signaling pathway can negatively regulate the replication of CSFV, and that ST cells infected with CSFV may regulate virus replication and maintain cell homeostasis by inducing Akt negative feedback activation. Two effector molecules ULK1 and S6K1, which regulate autophagy and protein synthesis downstream of the pathway, were used as entry points. TEM, Western-blot, confocal microscopy, LC3 double fluorescent autophagy lentivirus, IFA detection of virus titer and fluorescence quantitative PCR proved that CSFV infection could enhance the autophagy of ST cells. K1 inhibitors inhibit or activate mTOR/ULK1 activity, indicating that autophagy is significantly promoted or inhibited, whereas virus replication is correspondingly promoted or inhibited. It is demonstrated that CSFV induces cell autophagy through mTOR/ULK1-dependent signaling pathway and promotes virus replication. On the other hand, double luciferase reporter gene system is used to construct CSFV-containing interior. The fluorescein enzyme recombinant vector (CSFV-IRES) at the ribosomal entry site (IRES) was used to demonstrate that the overexpression and interference of S6K1 could inhibit and promote the drive activity of CSFV-IRES protein. The results of viral titer detection and fluorescence quantitative PCR showed that overexpression and interference of S6K1 could inhibit and promote CSFV-IRES protein. FV replication. Immunocoprecipitation, ribosome isolation and fluorescence quantitative PCR confirmed that CSFV-infected ST cells inhibited the phosphorylation of mTOR/S6K1, thereby facilitating the binding of S6K1 to eukaryotic initiation factor 3 (elF3A), releasing CSFV-IRES to compete with eIF3 to bind to 40S ribosomes and promoting the translation of viral mRNA. Akt/mTOR signaling pathway was inhibited. CSFV infection usually does not inhibit cell proliferation and apoptosis in vitro. Therefore, in combination with the above studies, we explore whether CSFV infection inhibits Akt/mTOR signaling pathway by inducing Akt negative feedback to maintain cell proliferation and anti-apoptosis in order to provide stable details for virus replication. Akt phosphorylation was detected by Western-blot. The results showed that Akt phosphorylation decreased first and then recovered. It was further confirmed that CSFV-infected ST cells could induce Akt negative feedback activation. Using Akt inhibitor LY294002 alone or in conjunction with CSFV, the proliferation of ST cells was detected by SRB assay. The results showed that inhibition of Akt activity and infection with CSFV increased significantly compared with inhibition of Akt alone or infection with CSFV alone. Once Akt was inhibited by the inhibitor, the negative feedback activation of Akt induced by CSFV was inhibited accordingly, so the cell proliferation could not be maintained. Next, the results of cell apoptosis detection showed that the rate of cell apoptosis induced by inhibiting Akt activity and infecting CSFV at the same time was higher than that induced by inhibiting Akt alone or CSFV alone. Finally, the results of fluorescence quantitative PCR assay showed that continuous blockade of Akt for 72 hours could continuously increase the number of viral genomic copies compared with single infection of CSFV cells, suggesting that CSFV infection could cause negative feedback activation of Akt and consequently maintain the disease. These results fully confirm that CSFV-infected ST cells induce Akt negative feedback activation and can maintain cell survival and virus replication. In conclusion, this study fully confirms that CSFV-infected host cells can maintain virus replication and cell survival by hijacking the mTOR signaling pathway, providing a basis for the prevention and treatment of swine fever with Akt/mTOR activation. New targets and ideas.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S852.651
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘智;張令強(qiáng);蔣繼志;賀福初;;mTOR的研究進(jìn)展[J];細(xì)胞生物學(xué)雜志;2006年03期
2 Nan Wang;Ruijuan Wu;Xiaoheng Cheng;Jin Jin;Zongchao Jia;Jimin Zheng;;New insights into mTOR structure and regulation[J];Chinese Science Bulletin;2014年24期
3 陳j,張紅鋒;mTOR信號(hào)通路與癌癥治療[J];生命的化學(xué);2005年02期
4 張超;章雄文;丁健;;Akt-mTOR的互動(dòng)與癌癥的發(fā)生[J];生命科學(xué);2007年01期
5 張娟;李欣;楊麗;田朗;邢曉為;黃利華;楊作成;;柯薩奇病毒B3感染HeLa細(xì)胞后mTOR通路部分信號(hào)蛋白表達(dá)的變化[J];中國(guó)現(xiàn)代醫(yī)學(xué)雜志;2014年11期
6 林駿;白曉春;;mTOR信號(hào)通路與“炎-癌”轉(zhuǎn)變[J];生物化學(xué)與生物物理進(jìn)展;2014年01期
7 王怡;張姣姣;楊煒蓉;王莉娟;王鮮忠;;哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)信號(hào)通路與生理功能的調(diào)節(jié)研究進(jìn)展[J];中國(guó)畜牧獸醫(yī);2012年04期
8 鄭杰;;mTOR信號(hào)途徑與腫瘤[J];生命科學(xué);2006年03期
9 劉家宏;徐小潔;符靜;范忠義;呂朝暉;陸菊明;肖文華;朱建華;葉棋濃;;慢病毒介導(dǎo)的mTOR敲低肝癌細(xì)胞株HepG2的構(gòu)建及初步功能檢測(cè)[J];生物技術(shù)通訊;2013年04期
10 陳洪菊;屈藝;母得志;;mTOR信號(hào)通路的生物學(xué)功能[J];生命的化學(xué);2010年04期
相關(guān)會(huì)議論文 前10條
1 Huayong Zhou;Yi Wang;Lanping Ma;Xin Wang;Lin Chen;Yi Chen;Jian Ding;Tao Meng;Linhua Meng;Jingkang Shen;;Novel indazole-based derivatives as PI3K/mTOR dual inhibitors[A];2012長(zhǎng)三角藥物化學(xué)研討會(huì)論文集[C];2012年
2 ;Activation of mTOR Pathway Confers Adverse Outcome in Nonsmall Cell Lung Carcinoma[A];中華醫(yī)學(xué)會(huì)第五屆全國(guó)胸部腫瘤及內(nèi)窺鏡學(xué)術(shù)會(huì)議論文匯編[C];2011年
3 韓進(jìn)松;陳穎;宋云龍;呂加國(guó);周有駿;朱駒;;Structure-Based Design,Synthesis,and Antitumor Activities of Novel Water-soluble Dual Inhibitors of PI3K and mTOR[A];2012長(zhǎng)三角藥物化學(xué)研討會(huì)論文集[C];2012年
4 姜偉;王修啟;束剛;江青艷;楊舟;;mTOR信號(hào)通路及其對(duì)骨骼肌蛋白質(zhì)合成的影響[A];全國(guó)動(dòng)物生理生化第十一次學(xué)術(shù)交流會(huì)論文摘要匯編[C];2010年
5 管坤良;;The TSC-mTOR pathway in cell growth and cancer[A];2009醫(yī)學(xué)前沿論壇暨第十一屆全國(guó)腫瘤藥理與化療學(xué)術(shù)會(huì)議論文集[C];2009年
6 Hai Huang;Xin Liu;;The molecular mechanism of apoptosis in human gastric cancer SGC-7901 cells induced by evodiamine inhibition mTOR signal pathway[A];中國(guó)生物化學(xué)與分子生物學(xué)會(huì)第十屆會(huì)員代表大會(huì)暨全國(guó)學(xué)術(shù)會(huì)議摘要集[C];2010年
7 孟祥斐;郁金泰;譚蘭;;靶向作用于mTOR治療癲癇[A];山東省2013年神經(jīng)內(nèi)科學(xué)學(xué)術(shù)會(huì)議暨中國(guó)神經(jīng)免疫大會(huì)2013論文匯編[C];2013年
8 曾軍英;胡興;皮建輝;;Cytotoxic Elimination of Chemoresistant Pancreatic Cancer Stem Cells by Combined Inhibition of RON and mTOR Signaling Pathways[A];湖南省生理科學(xué)會(huì)2013年度學(xué)術(shù)年會(huì)論文摘要匯編[C];2013年
9 ;mTOR enhancement of STIM1-mediated store-operated Ca~(2+) signaling constrains tumor development[A];第九屆全國(guó)鈣信號(hào)和細(xì)胞功能研討會(huì)論文摘要集[C];2012年
10 ;mTOR.rictor Is Required by the Development of Mouse One-cell Stage Embryos[A];第九屆全國(guó)酶學(xué)學(xué)術(shù)討論會(huì)暨鄒承魯誕辰85周年紀(jì)念會(huì)論文摘要集[C];2008年
相關(guān)重要報(bào)紙文章 前2條
1 駐京記者 李瑤;mTOR提供癌癥治療新思路[N];醫(yī)藥經(jīng)濟(jì)報(bào);2010年
2 本報(bào)記者 白毅;mTOR信號(hào)通路為腫瘤治療提供新靶點(diǎn)[N];中國(guó)醫(yī)藥報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 劉倫志;腎素抑制劑對(duì)高糖誘導(dǎo)足細(xì)胞凋亡與mTOR表達(dá)的影響[D];武漢大學(xué);2014年
2 李舒展;PGAM1在mTOR誘導(dǎo)腫瘤有氧糖酵解中的作用及機(jī)制研究[D];天津醫(yī)科大學(xué);2015年
3 叢江琳;MiR-634通過(guò)調(diào)控mTOR信號(hào)途徑抑制宮頸癌細(xì)胞增殖及誘導(dǎo)凋亡的實(shí)驗(yàn)研究[D];山東大學(xué);2015年
4 胡越;mTOR和細(xì)胞自噬在LPS誘導(dǎo)的急性肺損傷中分子調(diào)控機(jī)制的研究[D];浙江大學(xué);2016年
5 陳玲琳;調(diào)控mTOR信號(hào)通路對(duì)癲癇的作用及其機(jī)制研究[D];浙江大學(xué);2016年
6 黃暢;基于mTOR信號(hào)通路探討艾灸及艾煙對(duì)APP/PS1雙轉(zhuǎn)基因小鼠認(rèn)知障礙的影響及機(jī)制研究[D];北京中醫(yī)藥大學(xué);2017年
7 苗麗君;慢病毒介導(dǎo)的mTOR靶向抑制對(duì)肺腺癌A549細(xì)胞生物學(xué)功能的影響[D];鄭州大學(xué);2012年
8 曾梅;自我吞噬及mTOR信號(hào)在小鼠神經(jīng)瘤細(xì)胞分化過(guò)程中的作用[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年
9 周樂(lè)杜;PI3K/Akt/mTOR信號(hào)通路在肝細(xì)胞癌發(fā)病機(jī)制中的作用及靶向干預(yù)研究[D];中南大學(xué);2010年
10 張慧;蛋白攝入水平對(duì)早產(chǎn)學(xué)習(xí)認(rèn)知能力及mTOR/S6K通路的影響[D];南方醫(yī)科大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 閆斌;血清mTOR檢測(cè)對(duì)消化系統(tǒng)惡性腫瘤患者的臨床意義[D];內(nèi)蒙古大學(xué);2012年
2 王艮波;mTOR通路在氯化亞鐵誘導(dǎo)的外傷性癲癇大鼠模型額葉皮質(zhì)及海馬中的表達(dá)研究[D];福建醫(yī)科大學(xué);2015年
3 羅榮奎;肝臟血管平滑肌脂肪瘤的臨床病理特征及mTOR通路分析[D];復(fù)旦大學(xué);2014年
4 顧兵;腦出血后mTOR信號(hào)通路激活及雷帕霉素腦保護(hù)作用機(jī)制研究[D];蘇州大學(xué);2015年
5 張劍;食管鱗狀細(xì)胞癌中mTOR表達(dá)及其與癌癥惡性程度和患者機(jī)體免疫反應(yīng)水平相關(guān)性研究[D];青島大學(xué);2015年
6 周璇;mTOR信號(hào)通路在小鼠B淋巴細(xì)胞成熟及抗體產(chǎn)生中的作用及其機(jī)制[D];南方醫(yī)科大學(xué);2014年
7 楊雪帆;慈菇多糖對(duì)小鼠免疫功能及mTOR信號(hào)通路的影響[D];福建醫(yī)科大學(xué);2015年
8 夏傳友;組蛋白甲基化酶SMYD3在前列腺癌中mTOR通路的機(jī)制研究[D];山東大學(xué);2016年
9 王嘉禎;食管鱗癌細(xì)胞中LSD1與mTOR通路相互調(diào)控作用研究[D];鄭州大學(xué);2016年
10 張海環(huán);豬小腸賴氨酸轉(zhuǎn)運(yùn)體對(duì)氮源的響應(yīng)規(guī)律及mTOR信號(hào)通路的調(diào)控研究[D];吉林農(nóng)業(yè)大學(xué);2016年
,本文編號(hào):2233893
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/2233893.html