近紅外反射光譜快速評定棉粕營養(yǎng)價值的研究
本文選題:棉粕 + 近紅外反射光譜。 參考:《甘肅農業(yè)大學》2016年碩士論文
【摘要】:本試驗研究近紅外反射光譜技術用于棉粕營養(yǎng)價值評定的可行性,選用我國新疆、山東和湖北等不同種植地區(qū)的76個色澤和氣味正常的棉粕樣品作為試驗材料,其中56個樣品用于建立水分、粗蛋白質、粗脂肪、粗纖維、粗灰分、總能值、蛋公雞表觀代謝能(AME)、真代謝能(TME)和氨基酸的近紅外定標模型,對模型進行內部交叉驗證,另外20個樣品作為外部驗證集對模型進行外部驗證,探討了福斯近紅外儀(FOSS XDS)和尼爾光電微型近紅外儀(Nir Smart Eye 1700)定標與驗證模型的穩(wěn)定性與適用性。試驗一應用福斯近紅外儀和尼爾光電微型近紅外儀,研究近紅外反射光譜技術測定棉粕常規(guī)養(yǎng)分含量和代謝能的可行性。從全國范圍內收集76個不同品種和產地,以及不同加工方式的棉粕樣品,測定其常規(guī)營養(yǎng)成分(水分、粗蛋白質、粗脂肪、粗纖維、粗灰分及總能)和蛋公雞代謝能含量,并隨機選取定標集(N=56)和外部驗證集(N=20)樣品,使用改進的偏最小二乘法(MPLS)建立近紅外定標模型。試驗結果表明:(1)不同來源棉粕的營養(yǎng)成分變異較大,常規(guī)營養(yǎng)成分變異系數(shù)為2.52%~84.75%,其中水分、粗脂肪和粗纖維的變異系數(shù)超過10%;粗蛋白質、粗灰分和總能的變異系數(shù)分別為9.58%、9.81%和2.52%;(2)福斯近紅外儀棉粕的水分、粗蛋白質、粗脂肪、粗纖維、粗灰分和總能的定標決定系數(shù)(RSQcal)為0.924~0.976,交互驗證決定系數(shù)(1-VR)為0.8247~0.9303,外部驗證決定系數(shù)(RSQv)為0.879~0.896,定標方程可用于日常分析。(3)尼爾光電微型近紅外儀棉粕的水分、粗蛋白質、粗脂肪、粗纖維和總能的RSQcal為0.905~0.951,定標標準差為(SEC)0.169~1.456,RSQv為0.883~0.959,定標方程可用于日常分析,粗灰分的RSQv為0.524,模型不可用。AME和TME的分布范圍分別為:4.63 MJ/kg~11.90 MJ/kg和5.39 MJ/kg~13.20 MJ/kg。用福斯近紅外儀建模得到的的AME和TME的RSQcal為0.969和0.927,1-VR為0.9170和0.9057,RSQv為0.911和0.892,定標方程可用于日常分析;用尼爾光電微型近紅外儀建模得到的AME和TME的RSQcal分別為0.954和0.949,SEC為0.400和0.475,RSQv為0.915和0.907,定標方程可用于日常分析,模型達到了可實用水平。試驗二探討了使用近紅外反射光譜法測定棉粕氨基酸含量的可行性。從全國范圍內收集76個不同品種和產地,以及不同加工方式的棉粕樣品,隨機選取定標集(N=56)和外部驗證集(N=20)樣品,并測定其16種氨基酸相應的含量。結果表明:不同來源棉粕中各氨基酸含量的差異較大;用福斯近紅外儀建模得到的天冬氨酸(Asp)、蘇氨酸(Thr)、谷氨酸(Glu)、甘氨酸(Gly)、賴氨酸(Lys)、組氨酸(His)、精氨酸(Arg)和色氨酸(Trp)的RSQcal為0.872~0.953,1-VR為0.7813~0.9504,RSQv為0.840~0.887,定標方程可用于日常分析,其它氨基酸的RSQv0.84,尚無法用于實際預測;尼爾光電微型近紅外儀建模得到的天冬氨酸(Asp)、蘇氨酸(Thr)、絲氨酸(Ser)、谷氨酸(Glu)、甘氨酸(Gly)、亮氨酸(Leu)、苯丙氨酸(Phe)、賴氨酸(Lys)、組氨酸(His)、精氨酸(Arg)和色氨酸(Trp)的RSQcal為0.865~0.970,SEC為0.016~0.537,RSQv為0.845~0.899,定標方程可用于日常分析,其它氨基酸的RSQv0.84,尚無法用于實際預測。在各營養(yǎng)成分、代謝能和氨基酸之間最佳的去散射方法不同。
[Abstract]:The feasibility of using near infrared reflectance spectroscopy to evaluate the nutritional value of cottonseed meal was studied. 76 samples of cotton meal with normal color and smell in Xinjiang, Shandong and Hubei were selected as experimental materials, and 56 of them were used to establish water, crude egg white matter, crude fat, coarse fiber, coarse ash, total energy value, and egg public. Chicken epigenetic metabolic energy (AME), true metabolic energy (TME) and amino acid near infrared calibration model, the internal cross validation of the model, and the external validation of the other 20 samples as external verification set, and the stability of the FOSS XDS and the Neal photoelectric micro type near infrared (Nir Smart Eye 1700) calibration and verification model are discussed. The feasibility of determining the conventional nutrient content and metabolic energy of cottonseed meal by near infrared spectroscopy was studied by using FIR near-infrared instrument and Neal photoelectric miniature near-infrared instrument. The samples of 76 different varieties and producing areas and different processing methods were collected from the whole country. The metabolic energy content of crude protein, crude fat, crude fiber, coarse ash and total energy) and egg rooster, and random selection of N=56 and external validation set (N=20) samples, and using the improved partial least squares (MPLS) method to establish the near infrared calibration model. The results showed: (1) the nutrient composition of the cottonseed meal from different sources varied greatly and the conventional nutrient composition changed. The coefficient of variation is 2.52%~84.75%, in which the coefficient of variation of water, crude fat and crude fiber is more than 10%, and the coefficient of variation of crude protein, crude ash and total energy is 9.58%, 9.81% and 2.52%, respectively. (2) the coefficient of determination of the moisture, crude protein, crude fat, crude fiber, coarse ash and total energy of the fir near infrared instrument is 0.924~0.976, and the interaction between the crude protein and the total energy is 0.924~0.976. The determination coefficient (1-VR) is 0.8247~0.9303, the external verification determination coefficient (RSQv) is 0.879~0.896, and the calibration equation can be used for daily analysis. (3) the moisture of the cottonseed meal, crude protein, crude fat, crude fiber and total energy RSQcal of Neal photoelectric miniature near infrared instrument are 0.905~0.951, the standard deviation is (SEC) 0.169~1.456, RSQv is 0.883~0.959, and the calibration square Cheng Ke is used for daily analysis. The RSQv of coarse ash is 0.524, and the distribution of the model is not available for.AME and TME. The AME and TME RSQcal of 4.63 MJ/kg~11.90 MJ/kg and 5.39 MJ/kg~13.20 MJ/kg. are obtained with AME and TME, 0.969 and 0.927,1-VR are 0.9170 and 0.9057, RSQv is 0.911 and 0.892, and the calibration equation can be used for daily analysis. The RSQcal of AME and TME obtained by Neal photoelectric micro near infrared instrument is 0.954 and 0.949, SEC is 0.400 and 0.475, RSQv is 0.915 and 0.907. The calibration equation can be used for daily analysis and the model reaches the practical level. Experiment two discussed the feasibility of using near infrared reflectance spectroscopy to determine the content of amino acid in cottonseed meal. The samples of 76 different varieties and producing areas and different processing methods were collected, and the N=56 and N=20 samples were randomly selected and the corresponding content of the 16 amino acids was measured. The results showed that the content of amino acids in the cottonseed meal of different sources was different, and the aspartic acid (Asp) was modeled by FTIR. Threonine (Thr), glutamic acid (Glu), glycine (Gly), lysine (Lys), histidine (His), arginine (Arg) and tryptophan (Trp) RSQcal are 0.872~0.953,1-VR 0.7813~0.9504, RSQv is 0.840~0.887, the calibration equation can be used for daily analysis, other amino acids are not used for practical prediction; Neal photoelectric miniature near infrared apparatus is modeled. Asp, serine (Thr), serine (Ser), glutamic acid (Glu), glycine (Gly), leucine (Leu), phenylalanine (Phe), lysine (Lys), histidine (His), arginine (Arg) and tryptophan (Trp) RSQcal are used for daily analysis and other amino acids It can not be used for practical prediction. The best method of scattering is different among nutrients, metabolizable energy and amino acids.
【學位授予單位】:甘肅農業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:S816.15
【參考文獻】
相關期刊論文 前10條
1 李靜;;近紅外光譜法測定棉粕中NDF和ADF含量的方法研究[J];黑龍江畜牧獸醫(yī);2014年13期
2 趙峰;米寶民;任立芹;王鈺明;張宏福;;基于單胃動物仿生消化系統(tǒng)的雞仿生消化法測定飼料酶水解物能值變異程度的研究[J];動物營養(yǎng)學報;2014年06期
3 嚴全根;朱曉鳴;楊云霞;韓冬;金俊琰;解綬啟;李鐘杰;;飼料中棉粕替代魚粉蛋白對草魚的生長、血液生理指標和魚體組成的影響[J];水生生物學報;2014年02期
4 趙小龍;劉大川;;棉籽蛋白資源開發(fā)研究進展[J];中國油脂;2014年01期
5 張鋮鋮;張石蕊;賀喜;李敏;文慧;沈俊;朱良;崔志杰;;我國不同地區(qū)棉籽粕的豬氨基酸標準回腸消化率的測定[J];動物營養(yǎng)學報;2013年12期
6 張中衛(wèi);溫志渝;曾甜玲;魏康林;梁玉前;;微型近紅外光纖光譜儀用于奶粉中蛋白質脂肪的定量檢測研究[J];光譜學與光譜分析;2013年07期
7 曹振民;;幾種加工工藝對飼料營養(yǎng)價值的影響[J];養(yǎng)殖與飼料;2012年07期
8 侯彩云;王海榮;敖長金;韓吉雨;馮輝;;幾種棉粕飼料的質量評定[J];畜牧與飼料科學;2012年04期
9 毛樹春;馮璐;;中國農業(yè)科學院2011年全國棉花種植品種監(jiān)測報告——播種品種(系)567個,數(shù)量基本持平[J];中國棉麻流通經(jīng)濟;2012年01期
10 黃莊榮;陳進紅;劉海英;祝水金;;棉籽17種氨基酸含量的NIRS定標模型構建與測定方法研究[J];光譜學與光譜分析;2011年10期
相關會議論文 前1條
1 武洪慧;焦洪超;林海;;棉粕家禽代謝能評定方法研究[A];第七屆中國飼料營養(yǎng)學術研討會論文集[C];2014年
相關博士學位論文 前2條
1 焦洪超;棉粕日糧對蛋雞生產性能和肝臟脂肪代謝的影響及其機制研究[D];山東農業(yè)大學;2014年
2 李軍濤;近紅外反射光譜快速評定玉米和小麥營養(yǎng)價值的研究[D];中國農業(yè)大學;2014年
相關碩士學位論文 前9條
1 饒淵;日糧棉粕水平對雞腸道屏障功能體系的影響[D];山東農業(yè)大學;2013年
2 張鋮鋮;我國不同地區(qū)棉粕豬氨基酸回腸消化率的研究[D];湖南農業(yè)大學;2012年
3 郭婷婷;陸地棉棉籽蛋白質含量、油份含量近紅外分析模型的建立及其QTL的篩選、定位[D];南京農業(yè)大學;2011年
4 劉雨田;基于仿生消化系統(tǒng)的酶法測定雞蛋白質飼料代謝能值的研究[D];西北農林科技大學;2010年
5 王義峰;微型近紅外光譜儀在酒類檢測中的應用研究[D];重慶大學;2009年
6 檀其梅;NIRs對11種飼料原料常規(guī)成分測定結果的可靠性評估[D];安徽農業(yè)大學;2008年
7 向賢毅;微型近紅外光譜儀系統(tǒng)的研究[D];重慶大學;2008年
8 李靜;傅立葉近紅外測定麥麩、棉粕化學成分及適宜建模水分背景的選擇[D];四川農業(yè)大學;2007年
9 何英;糠麩糟渣、餅粕類飼料豬有效能預測模型的研究[D];四川農業(yè)大學;2004年
,本文編號:1892553
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/1892553.html