基于UAV技術(shù)和MODIS遙感數(shù)據(jù)的高寒草地蓋度動態(tài)變化監(jiān)測研究——以黃河源東部地區(qū)為例
發(fā)布時間:2018-03-12 10:45
本文選題:黃河源區(qū) 切入點:草地蓋度 出處:《草業(yè)學(xué)報》2017年03期 論文類型:期刊論文
【摘要】:利用黃河源東部地區(qū)野外實測樣地數(shù)據(jù)和MODIS衛(wèi)星遙感資料,結(jié)合農(nóng)業(yè)多光譜相機(jī)(agricultural digital camera,ADC)、普通數(shù)碼相機(jī)(Canon)、無人機(jī)(unmanned aerial vehicle,UAV)等設(shè)備獲取的高寒草地蓋度數(shù)據(jù),構(gòu)建了基于MODIS NDVI、EVI的草地蓋度反演模型,比較分析了不同草地蓋度監(jiān)測方法的精度,確立了黃河源區(qū)草地蓋度遙感監(jiān)測的最優(yōu)反演模型,并分析了研究區(qū)近16年草地植被蓋度的動態(tài)變化。結(jié)果表明,1)MODIS NDVI與基于UAV相片計算的草地蓋度間的相關(guān)性優(yōu)于MODIS EVI,而MODIS EVI與ADC和Canon照片計算的草地蓋度之間的相關(guān)性則優(yōu)于MODIS NDVI;2)就Canon和ADC方法構(gòu)建的草地蓋度反演模型而言,前者精度遠(yuǎn)高于后者,普通數(shù)碼相機(jī)方法更適宜于高寒草地植被蓋度的估算;3)對比分析兩種植被指數(shù)與Canon相機(jī)、ADC和大疆(DJI)無人機(jī)航拍(航高30和100m兩種方法)相片計算的草地蓋度之間的關(guān)系表明,MODIS NDVI對航高30m UAV航拍相片計算的蓋度數(shù)據(jù)的響應(yīng)最敏感,基于UAV航高30m的相片和NDVI構(gòu)建的草地蓋度反演模型最優(yōu);4)黃河源東部地區(qū)2000-2015年間草地蓋度穩(wěn)定不變的區(qū)域達(dá)71.46%,多分布在東南部;呈增加趨勢的區(qū)域占研究區(qū)草地面積的22.01%,由西向東、由北向南增加幅度呈減少趨勢;蓋度減少區(qū)域零星分布在黃河源北部和南部的部分地區(qū),僅占研究區(qū)草地面積的6.53%。
[Abstract]:Based on field field data and MODIS satellite remote sensing data in the eastern part of the Yellow River, the coverage data of alpine grassland obtained by agricultural digital camera-ADCA, ordinary digital camera Canon, unmanned aerial vehicle UAV, etc., are used to measure the coverage of alpine grassland. A grassland coverage inversion model based on MODIS NDVI is established. The accuracy of different grassland coverage monitoring methods is compared and analyzed. The optimal inversion model for remote sensing monitoring of grassland coverage in the source region of the Yellow River is established. The dynamic changes of grassland vegetation coverage in recent 16 years in the study area were analyzed. The results show that the correlation between MODIS NDVI and grassland coverage calculated based on UAV photos is better than that of MODIS EVI, while the phase between MODIS EVI and grassland coverage calculated by ADC and Canon photographs is better than that of MODIS EVI. On the other hand, the correlation is better than that of MODIS NDVI-2) in terms of the inversion model of grassland coverage constructed by Canon and ADC methods, The former is far more accurate than the latter. Comparison and Analysis of vegetation coverage between two vegetation Indexes and aerial photographs of Canon camera and DJI UAV (altitude 30 and 100m). The relationship shows that MODIS NDVI is the most sensitive to the coverage data calculated by aerial photographs taken at 30 m UAV altitude. The grassland coverage inversion model based on 30 m high of UAV and NDVI is the best one. The area with stable grassland coverage in the eastern part of the Yellow River from 2000 to 2015 is 71.46, mostly distributed in the southeast of China. The area with increasing trend accounts for 22.01% of the grassland area in the study area, and decreases from west to east, and decreases from north to south, and the decreasing area of coverage is scattered in some areas of the north and south of the source of the Yellow River, accounting for only 6.53% of the grassland area in the study area.
【作者單位】: 草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院;
【基金】:國家自然科學(xué)基金項目(31372367,31228021,41401472) 農(nóng)業(yè)部公益性行業(yè)(農(nóng)業(yè))科研專項項目(201203006) 中國氣象局氣候變化專項項目(CCSF201603) 長江學(xué)者和創(chuàng)新團(tuán)隊發(fā)展計劃(IRT13019)資助
【分類號】:S812
【相似文獻(xiàn)】
相關(guān)會議論文 前1條
1 楊忠;方挺;樊瓊劍;羅德林;;基于視覺傳感器的UAV編隊飛行[A];第二十七屆中國控制會議論文集[C];2008年
相關(guān)碩士學(xué)位論文 前5條
1 張珊珊;基于UAV動態(tài)特性限制的WSN分簇路由方法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 吳作飛;UAV機(jī)載數(shù)碼相機(jī)程控裝置研制[D];中國測繪科學(xué)研究院;2007年
3 高圓圓;無人直升機(jī)(UAV)低空低容量噴灑農(nóng)藥霧滴在禾本科作物冠層的沉積分布及防治效果研究[D];東北農(nóng)業(yè)大學(xué);2013年
4 周國香;UAV載多面陣數(shù)碼相機(jī)拼接技術(shù)的研究[D];山東科技大學(xué);2009年
5 孫勝凱;微型UAV視覺輔助降落系統(tǒng)研究[D];浙江大學(xué);2008年
,本文編號:1601214
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/1601214.html
最近更新
教材專著