約氏瘧原蟲紅外期相關(guān)基因及宿主抗瘧原蟲子孢子感染免疫分子研究
[Abstract]:Anopheles mosquito-borne malaria is a tropical infectious disease that seriously endangers human health. It has high morbidity and mortality in people around the world, affecting economic and social development in epidemic areas, threatening nearly 40% of the world's population in more than 100 countries, Especially in tropical and sub-tropical areas. Despite the long-term efforts of malaria workers to explore, there are currently about 3-500 million people worldwide, about 1-3 million people die due to malaria infection, most of whom are children under five years of age. In the southern region of our country, especially in mountainous areas, there is still a large-scale epidemic in a particular environment. In recent years, with the emergence and rapid diffusion of P-P resistant strains and the increase of mosquito-mediated resistance to insecticides, there is no effective antimalarial vaccine, which brings great difficulties to the prevention and treatment of malaria. Malaria control is facing enormous challenges and seeks new, efficient and safe malaria control strategies. Malaria is transmitted by infectious mosquito bites. After the sporozoites of Plasmodium vivax enter the blood circulation, they can quickly adhere to and invade the liver cells. After the proliferation of the infrared period, the invasion of red blood cells leads to malaria. The development of interfering merozoites in hepatocytes is the prevention of malaria transmission and clinical symptoms. Therefore, the development of vaccine targeting Plasmodium vivax can not only prevent the pathological damage caused by Plasmodium vivax, but also block the gamete. However, the high background interference caused by the host hepatocytes, liver tissue, However, with the development of molecular biology and biochemical technology, the research on the infrared period of P. P. has become more and more affected The antigenic difference and variation of P. falciparum are very common, and have very complex antigenic structure and many different antigen table positions. Most of the antigen table bits have stage specificity in different periods, and there are also species and strains of P. falciparum. has the characteristics of weak antigenicity and the like, and can be caused by invading the host body. Complex immune response. T-cell immunity plays an important role in the immune response caused by P. falciparum. Therefore, the role of co-stimulatory molecules inducing T-cell activation in infrared immunity is malaria therapy. On the basis of the development of vaccine, this topic was used to isolate the sporozoites of Plasmodium yoelii from the tail vein to infect the rats. According to the mammalian host model of Anopheles sinensis, two aspects of the immune response produced by Plasmodium vivax in the host body and the host immune system following the stimulation of Plasmodium vivax were studied: On the one hand, the technique of differential display PCR (DD-PCR) was applied to screen. The cDNA of Plasmodium vivax IR was cloned to TA vector by comparative analysis. According to the result of sequence homology analysis and function prediction, the gene related to the development of Plasmodium vivax was estimated. On the other hand, RT-PCR was used to react with direct immunofluorescence. Method of co-focusing technique, from gene and co-stimulatory molecule expression to host to Plasmodium vivax stimulation The immune response produced was studied. The experimental content and the knot The fruit mainly comprises the following aspects: 1. Aiming at the characteristics of high content of A + T (> 70%) of Plasmodium gene A + T, this experiment has been changed. According to the A + T content of the DD-PCR primer, a primer capable of specifically amplifying the A + T content of the Plasmodium gene from the sample of liver tissue and Plasmodium vivax is designed, the primer is combined with the DD-PCR technology, and the purified merozoite is bypassed. According to the technical barrier, the Plasmodium falciparum gene is specifically amplified. The obtained nucleic acid sequence is accessed into the GenBank database, and the sequence homology comparison is carried out through the Blast query, and the results are shown in 21 clones to be tested: 8 genes related to the infrared period of Plasmodium yoelii (PyHs7, PyHs5, PyHs6, PyHs7, PyHs8, PyHs9 PyHs10, PyHs11), in which PyHs5 is similar to Plasmodium vivax glucosamine phosphate utase (AGM), PyHs5 has homology with Plasmodium falciparum erythrocyte membrane protein 3 (EMP3), PyHs6, PyHs7, PyHs8, PyHs9, PyHs1 0. PyHs11 is a functionally unknown gene. The molecular mechanism of long development provides a theoretical foundation. By using the RT-PCR method, we can qualitatively and quantitatively analyze the host immune-related genes B7.1, B7.2, CD28-7721, IFN-, and explore the change of immune-related genes in mammalian hosts after Plasmodium infection. Conditions: There was little change in expression of B7.1 in the host body after infection of Plasmodium yoelii. The transcription level of P <0.05 was significantly increased (P <0.05). By combining direct immunofluorescence and laser co-focusing, the expression and localization of B7. 1 and B7.2 of the co-stimulatory molecules after Plasmodium infection were observed. The molecular expression of B7.1 and B7.2 was increased, in which the rising rate of B7.1 molecules began to decrease after 72h, while the up-regulation of B7.2 molecule increased rapidly after 48h reached the peak value, and then fell back at 72h; in the 2-72h after plasvax infection, the table of B7.2 In addition, laser scanning confocal microscopy showed that after Plasmodium infection, the expression of B7.1, B7.2 molecules in macrophages increased with time. The point is delayed from the cytoplasm and the nucleus gradually transferred to the cell membrane. According to this phenomenon, we can speculate that after the stimulation of P. P., the co-stimulatory molecule begins to activate. In conclusion, we studied some immune molecules of Plasmodium vivax development-related molecule and host anti-malaria parasite from parasites and hosts, and systematically discussed the merozoite of Plasmodium vivax. Molecular mechanism of sub-cell development and immune response induced by Plasmodium vivax, and preliminary study on the host immune cells and effector molecules after Plasmodium infection in the expression level of genes and immune molecules
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2006
【分類號】:R392
【相似文獻】
相關(guān)期刊論文 前10條
1 王艷艷;張健;徐文岳;段建華;黃復(fù)生;;蒿甲醚對約氏瘧原蟲在斯氏按蚊體內(nèi)發(fā)育影響[J];成都醫(yī)學(xué)院學(xué)報;2011年02期
2 張健;王英;李振倫;黃復(fù)生;;與按蚊唾液腺抗瘧原蟲子孢子入侵相關(guān)的差異表達cDNA文庫構(gòu)建[J];成都醫(yī)學(xué)院學(xué)報;2011年02期
3 張錫林;王英;陳繼德;宋蓓;;大劣按蚊感染約氏瘧原蟲defensins基因的克隆及生物信息學(xué)分析[J];成都醫(yī)學(xué)院學(xué)報;2011年02期
4 周桃莉;付雍;王艷艷;丁艷;譚章平;徐文岳;;抗生素對重組約氏瘧原蟲BY265株感染斯氏按蚊的影響[J];成都醫(yī)學(xué)院學(xué)報;2011年02期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會議論文 前10條
1 郭秀梅;王東;王恒;;約氏瘧原蟲疫苗候選抗原基因Pydyn的表達及其免疫保護性的研究[A];中國動物學(xué)會第七屆全國青年寄生蟲學(xué)工作者學(xué)術(shù)討論會論文摘要集[C];2002年
2 高吉青;劉升發(fā);韓偉;吳漢洲;王世媛;楊彩霞;洪凌仙;章軍;周克夫;;胸腺素原(ProTα)作為約氏瘧原蟲疫苗免疫佐劑的研究[A];2011新型疫苗與抗體創(chuàng)制關(guān)鍵技術(shù)及質(zhì)量控制研討會論文集[C];2011年
3 徐文岳;黃復(fù)生;張錫林;況明書;段建華;;大劣按蚊血淋巴酚氧化酶與約氏瘧原蟲卵囊黑化關(guān)系的研究[A];走向21世紀的中國昆蟲學(xué)——中國昆蟲學(xué)會2000年學(xué)術(shù)年會論文集[C];2000年
4 黃復(fù)生;時超美;段建華;況明書;;斯氏按蚊血細胞對約氏瘧原蟲卵囊黑化的影響[A];昆蟲學(xué)創(chuàng)新與發(fā)展——中國昆蟲學(xué)會2002年學(xué)術(shù)年會論文集[C];2002年
5 吳憶;馮輝;鄭麗;劉軍;馬世紅;曹雅明;;CD4~+CD25~+調(diào)節(jié)性T細胞在P.yoelii感染早期BALB/c和DBA/2小鼠的應(yīng)答差異[A];中國免疫學(xué)會第五屆全國代表大會暨學(xué)術(shù)會議論文摘要[C];2006年
6 陳繼德;徐文岳;周桃莉;丁艷;黃復(fù)生;;TLRs激動劑抑制紅外期瘧原蟲增殖及其機制研究[A];全國寄生蟲學(xué)與熱帶醫(yī)學(xué)學(xué)術(shù)研討會論文集[C];2008年
7 張錫林;呂楊;何諧;段建華;;約氏瘧原蟲紅外期發(fā)育、增殖相關(guān)蛋白及YIR蛋白的表位分析與原核表達研究[A];全國寄生蟲學(xué)與熱帶醫(yī)學(xué)學(xué)術(shù)研討會論文集[C];2008年
8 盧義欽;劉俊凡;;入侵瘧原蟲與紅細胞膜的相互作用[A];湖南省生理科學(xué)會2006年度學(xué)術(shù)年會論文摘要匯編[C];2007年
9 楊松;黃復(fù)生;況明書;徐文岳;段建華;;斯氏按蚊血淋巴差異表達蛋白的SDS-PAGE分析[A];昆蟲學(xué)創(chuàng)新與發(fā)展——中國昆蟲學(xué)會2002年學(xué)術(shù)年會論文集[C];2002年
10 張錫林;許穎;段建華;;約氏瘧原蟲子孢子侵入肝細胞相關(guān)基因及蛋白研究[A];全國寄生蟲學(xué)與熱帶醫(yī)學(xué)學(xué)術(shù)研討會論文集[C];2006年
相關(guān)博士學(xué)位論文 前9條
1 楊松;斯氏按蚊差異表達蛋白與約氏瘧原蟲卵囊黑化關(guān)系及信號調(diào)控機制研究[D];第三軍醫(yī)大學(xué);2004年
2 張健;TEP1在抗瘧藥—硝喹誘導(dǎo)按蚊黑化反應(yīng)中機理的研究[D];第三軍醫(yī)大學(xué);2008年
3 陳繼德;TLRs激動劑對紅外期瘧原蟲發(fā)育的影響與機制研究[D];第三軍醫(yī)大學(xué);2009年
4 王東;鼠瘧紅內(nèi)期動力素蛋白亞單位、核酸疫苗與細胞顆粒疫苗免疫效果的比較研究[D];中國協(xié)和醫(yī)科大學(xué);2002年
5 王英;大劣按蚊抗約氏瘧原蟲感染相關(guān)蛋白的研究[D];第三軍醫(yī)大學(xué);2006年
6 鐘翔;約氏瘧原蟲來源的巨噬細胞遷移抑制因子同源分子的功能研究[D];中國協(xié)和醫(yī)科大學(xué);2009年
7 邵丁丁;瘧原蟲表達的巨噬細胞遷移抑制因子同源分子的功能研究[D];中國協(xié)和醫(yī)科大學(xué);2006年
8 韓志富;惡性瘧原蟲動力素蛋白Pfdyn功能研究及感染惡性瘧原蟲紅細胞膜蛋白質(zhì)組檢測數(shù)據(jù)分析[D];中國協(xié)和醫(yī)科大學(xué);2004年
9 郝宏興;大劣按蚊成蚊cDNA文庫的構(gòu)建和前酚氧化酶部分基因克隆及瘧原蟲感染對其表達影響的研究[D];第三軍醫(yī)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 呂楊;約氏瘧原蟲紅外期發(fā)育、增殖相關(guān)蛋白及YIR蛋白表達與功能研究[D];第三軍醫(yī)大學(xué);2007年
2 宋蓓;約氏瘧原蟲紅外期相關(guān)基因及宿主抗瘧原蟲子孢子感染免疫分子研究[D];第三軍醫(yī)大學(xué);2006年
3 王艷艷;影響約氏瘧原蟲在按蚊體內(nèi)發(fā)育的因素及機制的初步研究[D];第三軍醫(yī)大學(xué);2011年
4 鄭偉;P. yoelii 17XL感染DBA/2小鼠保護性免疫機制的研究[D];中國醫(yī)科大學(xué);2004年
5 許穎;約氏瘧原蟲子孢子侵入肝細胞相關(guān)基因及蛋白研究[D];第三軍醫(yī)大學(xué);2005年
6 陳繼德;約氏瘧原蟲子孢子侵入相關(guān)基因分析及235kDa棒狀體蛋白研究[D];第三軍醫(yī)大學(xué);2006年
7 羅茗月;約氏瘧原蟲來源MIF同源分子對小鼠免疫系統(tǒng)功能調(diào)節(jié)的探索[D];北京協(xié)和醫(yī)學(xué)院;2012年
8 馬世紅;抗瘧治療對約氏瘧原蟲感染小鼠獲得性免疫影響的實驗研究[D];中國醫(yī)科大學(xué);2006年
9 徐文岳;大劣按蚊黑化包被約氏瘧原蟲免疫機理的研究[D];第三軍醫(yī)大學(xué);2001年
10 曾山;瘧原蟲源巨噬細胞遷移抑制因子的分泌途徑及其對宿主細胞基因表達影響的初步研究[D];中國協(xié)和醫(yī)科大學(xué);2008年
,本文編號:2273612
本文鏈接:http://sikaile.net/yixuelunwen/binglixuelunwen/2273612.html