HSV-2多表位復(fù)合DNA疫苗的構(gòu)建與誘導(dǎo)小鼠免疫效果的研究
[Abstract]:Objective To construct a multi-epitope compound DNA vaccine and immune adjuvant IL-2 plasmid of herpes simplex virus-2 (HSV-2) glycoprotein gD, gB, gC and early expression protein ICP-27, as well as a signal peptide plasmid and a ubiquitination plasmid modified on the basis of the composite vaccine plasmid, and to investigate the ability of the plasmid to induce immune response in mice.
Methods Six gene fragments of HSV-2 ICP27 377-459, gD146-179, gD223-306, gB529-606, gC247-282 and gD1-77 were amplified from the genome of HSV-2 wild strain in China by PCR. The fragments of HV fusion gene were cloned by pGEMT vector and inserted directionally. The recombinant eukaryotic expression plasmid HV-pcDNA3.1 was constructed and identified by enzyme digestion and sequencing.
The gD146-179 signal peptide fragment was amplified by PCR, and the recombinant plasmid gDs-HV-his-pcDNA3.1 was constructed by enzyme digestion and ligation.
Full-length ubiquitin gene and HSV-2 ICP27 377-459 in human genome DNA and HSV-2 genome were amplified by PCR. Fusion gene fragments were obtained by enzyme digestion and ligation. The recombinant plasmid Ub-ICP-pcDNA3.1 was constructed by inserting into eukaryotic expression plasmid pcDNA3.1 vector. The recombinant plasmid Ub-ICP-pcDNA3.1 was analyzed by enzyme digestion and sequenced.
The full-length gene of IL-2 cDNA was amplified by PCR. The recombinant plasmid IL-2-pcDNA3.1 was constructed and identified by restriction enzyme digestion and sequencing.
C57/BL6 female mice aged 6 weeks were randomly divided into 8 groups. Each group consistof 5 mice randomly divided into 8 groups. According to the different immunplasmid types and immunimmunmodes, each group was pcDNA3.1 (blankplasmid control), HV-pcDNA3.1, HV-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, gDs-HV-HV-his-pcDNA3.1, gDs-HV-HV-pcDNA3.1+his-pcDNA3.1, gDDs-HDs-HV-HV-pcDNA3.1+IL2-ppcDNA 3.1.
The mice in the first six groups were stimulated with specific antigens before immunization. Each mouse in the first six groups was adequately mixed with the corresponding plasmids of 5+5 UG (the amount of 5+5 UG in the group co-expressed with IL2) and the liposome of 1 ug. The spleen lymphocytes of the same batch of C57/BL6 female mice were transfected 20 minutes later. The spleen lymphocytes were cultured at 37 C for 4 hours with 5% CO_2 and injected subcutaneously into the mice in the second two groups with the corresponding plasmids of 5 UG (the L2 co-expression group was injected directly into bilateral anterior tibial muscles with the dose of 5+5ug. 14 days later, the mice in the first six groups were immunized with 100 UG of corresponding plasmids (100+100ug of the group co-expressed with IL2) and 10 UG of liposome. After 20 minutes, the mice in the latter two groups were injected into bilateral anterior tibial muscles with 100 UG of corresponding plasmids (with IL2). The expression group was injected directly into the bilateral anterior tibial muscles of mice with the dose of 100 + 100 ug. The method and dose of the immunotherapy were completely consistent with the formal immunization.
Three weeks after the immunization, the mice were killed by neck-cutting and the spleens were taken out for lymphocyte isolation. The specific IgG, IL-2 and IFN-gamma of HSV-2 in serum were detected by ELISA, the specific proliferation of splenic T lymphocyte was detected by MTT, the killer T lymphocyte (CTL) function was detected by lactate dehydrogenase assay and the CD4 + / CD8 + T cell was detected by flow cytometry. Classification of subgroups.
Results The constructed HV-pcDNA3.1 plasmid, IL2-pcDNA3.1 plasmid, Ub-ICP-pcDNA3.1 plasmid and gDs-HV-his-pcDNA3.1 plasmid were identified by enzyme digestion and DNA sequencing. The results showed that the HSV-2 multi-epitope compound DNA vaccine was successfully constructed.
The results showed that the combined immunization of gDs-HV-his-pcDNA3.1 and IL2-pcDNA3.1 had the strongest humoral immunity, and the specific IgG titer was about 400 times. The positive rate of CD4 on T cell surface was significantly different from that of pcDNA3.1 group (P < 0.05). The stimulus index SI of specific T lymphocyte reached about 2.75, while that of blank plasmid control group was about 0.7; the killing rate of CTL reaction in lymphocyte killing experiment (the effective target ratio was 50:1) was close to 50%, while that of blank plasmid control group was about 8%; the positive rate of CD 8 on T cell surface signal molecule was also obvious compared with blank vector pcDNA3.1 group. There was significant difference (P < 0.05), but there was no significant difference (P > 0.05) in CD4 + / CD8 +; the levels of IL 2 and IFN - gamma in serum were 1421.16 + 220.98, 685.21 + 104.20 in blank plasmid control group, 1956.19 + 219.60 in ng / L, 547.71 + 189.33 in empty plasmid control group.
Another group of experiments comparing different immune modes showed that liposome-encapsulated DNA vaccines could significantly improve the immune activity compared with bare DNA vaccines, and the liposome-encapsulated DNA vaccines could transfect IL2 plasmids and composite vaccine plasmids simultaneously.
conclusion
1. HSV-2 multi-epitope DNA vaccine was successfully constructed, including plasmid HV-pcDNA3.1, signal peptide plasmid gDs-HV-his-pcDNA3.1, ubiquitinated plasmid Ub-ICP-pcDNA3.1 and adjuvant plasmid IL2-pcDNA3.1.
2. Animal experiments in mice showed that the Vaccine Plasmid HV-pcDNA3.1 and the signal peptide plasmid gDs-HV-his-pcDNA3.1 could effectively induce humoral and cellular immune responses in mice, and the co-immunization effect was stronger with the adjuvant plasmid IL2-pcDNA3.1. The signal peptide plasmid gDs-HV-his-pcDNA3.1 and the adjuvant plasmid IL2-pcDNA3.1 co-injected to induce humoral immunity. The strongest immune response was induced by co-injection of plasmid HV-pcDNA3.1 and adjuvant plasmid IL2-pcDNA3.1.
3. Subcutaneous pre-injection of plasmid encapsulated in liposome and transfected with lymphocytes in vitro before immunization can significantly improve humoral and cellular immune responses compared with bare plasmid injection.
4. ubiquitin plasmid Ub-ICP-pcDNA3.1 can not induce effective humoral and cellular immune responses.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2006
【分類號】:R392;R752.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳春利;程小雯;呂星;房師松;王昕;;A型流感病毒M基因DNA疫苗載體構(gòu)建及免疫性研究[J];中國熱帶醫(yī)學(xué);2011年07期
2 齊文娟;方強(qiáng);;寄生蟲病DNA疫苗研究進(jìn)展[J];中國血吸蟲病防治雜志;2011年03期
3 李晨晨;于繼云;姜敏;涂亦嫻;馬曉林;張富春;;草原兔尾鼠卵透明帶3DNA疫苗pVAX1-sig-LTB-lZP3-C3d3的構(gòu)建表達(dá)及其免疫不育的研究[J];細(xì)胞與分子免疫學(xué)雜志;2011年09期
4 鄧璐;鄒墨;劉艷;羅恩杰;;DNA疫苗的轉(zhuǎn)運(yùn)途徑及其安全性研究進(jìn)展[J];醫(yī)學(xué)動物防制;2011年08期
5 張亮;閻瑾琦;王越;肖毅;高昆;董金凱;王博;于繼云;;可復(fù)制型抗腫瘤DNA疫苗PSCK-2PFcGB的構(gòu)建及體內(nèi)外表達(dá)[J];南方醫(yī)科大學(xué)學(xué)報(bào);2011年06期
6 胡方靖;武軍駐;;pIHsp65GM的構(gòu)建及其對結(jié)核桿菌感染小鼠的保護(hù)[J];免疫學(xué)雜志;2011年08期
7 張陽;王英麗;;MUC1基因疫苗對乳腺腫瘤抑制的實(shí)驗(yàn)研究[J];中國婦幼保健;2011年21期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會議論文 前10條
1 居巍;劉君炎;;結(jié)核桿菌HSP65佐劑DNA疫苗的實(shí)驗(yàn)研究[A];第6次全國微生物學(xué)與免疫學(xué)大會論文摘要匯編[C];2004年
2 姜秀云;何昭陽;;活體電穿孔法導(dǎo)入DNA:牛結(jié)核病免疫接種新技術(shù)[A];人畜共患傳染病防治研究新成果匯編[C];2004年
3 靳彥文;鐘輝;馬清鈞;;惡性瘧原蟲DNA疫苗的安全性研究[A];中國生物工程學(xué)會第三次全國會員代表大會暨學(xué)術(shù)討論會論文摘要集[C];2001年
4 田潔;劉君炎;;ConA與結(jié)核桿菌HSP65DNA疫苗聯(lián)合應(yīng)用的研究[A];湖北省暨武漢市免疫學(xué)會第八屆學(xué)術(shù)會議論文集[C];2003年
5 熊金虎;趙民;邱小萍;伍欣星;;人乳頭瘤病毒嵌合型DNA疫苗的構(gòu)建及其免疫效應(yīng)研究[A];湖北省暨武漢市生物化學(xué)與分子生物學(xué)學(xué)會第七屆第十四次學(xué)術(shù)年會論文摘要集[C];2003年
6 江云波;方六榮;肖少波;牛傳雙;張輝;陳煥春;;修飾的ORF5基因增強(qiáng)豬繁殖與呼吸綜合征DNA疫苗的免疫反應(yīng)[A];中國畜牧獸醫(yī)學(xué)會畜牧獸醫(yī)生物技術(shù)學(xué)分會暨中國免疫學(xué)會獸醫(yī)免疫分會第六次研討會論文集[C];2005年
7 吳長有;;DNA疫苗與免疫記憶[A];2005全國第二屆核酸疫苗研討會論文集[C];2005年
8 崔保安;魏戰(zhàn)勇;楊明凡;張素梅;;DNA疫苗免疫佐劑的研究進(jìn)展[A];中國畜牧獸醫(yī)學(xué)會家畜傳染病學(xué)分會成立20周年慶典暨第十次學(xué)術(shù)研討會論文集(上)[C];2003年
9 楊慧蘭;葛夢林;楊太成;劉榮卿;;單純皰疹病毒gD2 DNA疫苗免疫動物誘導(dǎo)的細(xì)胞免疫應(yīng)答[A];2003中國中西醫(yī)結(jié)合皮膚性病學(xué)術(shù)會議論文匯編[C];2003年
10 張冉;易新元;曾憲芳;;日本血吸蟲新基因克隆及DNA疫苗的構(gòu)建和保護(hù)性研究[A];中國動物學(xué)會全國第九次寄生蟲學(xué)學(xué)術(shù)討論會論文摘要集[C];2003年
相關(guān)重要報(bào)紙文章 前10條
1 蔣明 周漢橋;DNA疫苗研究取得突破[N];健康報(bào);2005年
2 林明貴 金關(guān)甫;DNA疫苗 戰(zhàn)勝結(jié)核的希望[N];健康報(bào);2003年
3 ;防治早老性癡呆DNA疫苗問世[N];新華每日電訊;2004年
4 ;DNA疫苗“餓”殺小鼠腫瘤[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年
5 陳勇;西尼羅病毒DNA疫苗開始臨床試驗(yàn)[N];健康報(bào);2005年
6 梅子;期待從今天開始[N];醫(yī)藥經(jīng)濟(jì)報(bào);2001年
7 劉恕;艾滋病疫苗離我們還有多遠(yuǎn)[N];科技日報(bào);2005年
8 本報(bào)記者 王玲 柯玲;中國艾滋病疫苗與時(shí)間賽跑[N];經(jīng)濟(jì)日報(bào);2005年
9 曲國斌;征服艾滋病不是夢[N];健康報(bào);2001年
10 何雁;何大一:傾心祖國艾滋病防治[N];人民日報(bào)海外版;2005年
相關(guān)博士學(xué)位論文 前10條
1 張洪英;口蹄疫多表位DNA疫苗的免疫原性和安全性研究[D];第二軍醫(yī)大學(xué);2003年
2 張靜;輪狀病毒分子流行病學(xué)調(diào)查及脂質(zhì)體DNA疫苗研究[D];重慶醫(yī)科大學(xué);2002年
3 王濤;嗜肺軍團(tuán)菌mip基因DNA疫苗初步研究[D];四川大學(xué);2004年
4 宋立強(qiáng);異種同源鈣激活Cl~-通道DNA疫苗對小鼠哮喘模型的防治作用[D];第四軍醫(yī)大學(xué);2004年
5 時(shí)陽;MAGE-1與IL-18共表達(dá)DNA疫苗的構(gòu)建及體內(nèi)外功能驗(yàn)證[D];吉林大學(xué);2004年
6 郭瀛軍;豬帶絳蟲囊蟲病DNA疫苗的中試及免疫效力研究[D];第二軍醫(yī)大學(xué);2004年
7 張夢寒;漢城病毒M片段和漢灘病毒部分S片段核酸疫苗pEGFP-M-S的構(gòu)建及基因免疫研究[D];蘇州大學(xué);2005年
8 焦解歌;豬Endoglin DNA疫苗誘導(dǎo)抗腫瘤血管生成機(jī)理研究[D];中南大學(xué);2005年
9 郭慧琛;O型口蹄疫病毒多基因DNA疫苗的研制[D];中國農(nóng)業(yè)科學(xué)院;2004年
10 張含;口服DNA疫苗防治實(shí)驗(yàn)性脈絡(luò)膜血管新生[D];中國醫(yī)科大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 張恒;雞貧血病毒DNA疫苗的研究[D];山東師范大學(xué);2003年
2 曾政;布魯氏菌新型疫苗的構(gòu)建及其免疫原性研究[D];西北農(nóng)林科技大學(xué);2004年
3 楊帆;雞傳染性支氣管炎病毒分離株IBV_(WHNJ)M基因DNA疫苗研究[D];四川農(nóng)業(yè)大學(xué);2004年
4 楊璇;癌胚抗原DNA疫苗的構(gòu)建及佐劑對其免疫效應(yīng)的影響[D];鄭州大學(xué);2002年
5 黃力;口蹄疫多表位DNA疫苗的免疫原性[D];河北醫(yī)科大學(xué);2004年
6 張強(qiáng)哲;H5亞型禽流感病毒HA DNA疫苗的研究[D];西北農(nóng)林科技大學(xué);2003年
7 蔣英;白細(xì)胞介素12對結(jié)核病DNA疫苗效應(yīng)的增強(qiáng)作用[D];重慶醫(yī)科大學(xué);2003年
8 蔣文明;以減毒沙門氏菌為載體傳遞豬繁殖與呼吸綜合征病毒DNA疫苗的口服免疫應(yīng)答[D];南京農(nóng)業(yè)大學(xué);2004年
9 賈文影;新孢子蟲PO基因的真核表達(dá)及DNA疫苗的初步研究[D];延邊大學(xué);2010年
10 羅彬;犬瘟熱病毒H基因克隆分析及DNA疫苗研究[D];中國農(nóng)業(yè)科學(xué)院;2010年
本文編號:2178878
本文鏈接:http://sikaile.net/yixuelunwen/binglixuelunwen/2178878.html