天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 病理論文 >

電磁場對細胞蛋白質表達的影響

發(fā)布時間:2018-06-02 12:20

  本文選題:電磁場 + 極低頻電磁場; 參考:《浙江大學》2007年博士論文


【摘要】: 隨著無線通訊技術和電力事業(yè)的飛速發(fā)展,電磁輻射已成為環(huán)境中增長最快、影響最為普遍的因素之一,對其健康危害的認識和預防事關我國科技、經(jīng)濟和社會的可持續(xù)發(fā)展。有流行病學調查顯示極低頻電磁場(ELF EMF)暴露可引起白血病和乳腺癌等發(fā)病率增高;移動電話的射頻電磁場(RF EMF)暴露可影響中樞神經(jīng)系統(tǒng)功能,導致腦瘤等惡性病變。這些流行病學調查結果推動了電磁場對生物體的生物學效應及其機理的研究。體內、體外的實驗研究提示低強度電磁場對神經(jīng)系統(tǒng)、生殖系統(tǒng)和免疫系統(tǒng)等可產生一定影響,但同時也有大量的陰性報道存在,導致無法對電磁場的健康危險度進行正確評估。造成這種現(xiàn)象的原因在于電磁場與生物體作用的原初物理過程、引發(fā)的生物學反應以及產生生物學效應的機制不清,電磁場生物學效應的研究存在一定的盲目性。因此,揭示低強度電磁場生物學效應及作用機制成為目前迫切需要解決的問題。 生物系統(tǒng)受電磁場輻照所產生的各種生理生化改變可能涉及到基因的表達調控。有研究發(fā)現(xiàn),電磁場可改變原癌基因、凋亡相關基因、周期調控基因等的mRNA水平,如極低頻電磁場可誘導原癌基因c-myc、c-jun和c-fos的轉錄,改變鼠胚胎干細胞凋亡相關基因bcl-2和bax、細胞周期調控相關基因GADD45的轉錄:一定強度射頻電磁場可下調神經(jīng)元特異性Nurrl基因的表達,上調bax、GADD45 mRNA的水平;低頻電磁場間斷輻照可上調p53缺陷型細胞中c-jun、p21和egr-1 mRNA的水平,但野生型細胞不受影響:1710 MHz射頻電磁場可顯著上調p53缺陷型細胞中Hsp70 mRNA的轉錄,同時使c-jun、c-myc和p21 mRNA瞬時低幅度增加。 基因在生物體的功能最終由其編碼的蛋白質在細胞水平上體現(xiàn),因此從蛋白質的角度入手才能真正揭示生命活動的規(guī)律。電磁場對細胞蛋白質表達的作用研究不多,主要集中在對鳥苷酸脫羧酶ODC、熱休克蛋白HSP27/70以及一些信號轉導途徑中信號分子PKA、PKC、TPK、MAPK等表達水平或磷酸化等翻譯后修飾的影響上。然而在這些研究中,實驗者通常是根據(jù)推測的電磁場作用的可能效應、作用靶點和機制,選擇相關的單個或幾個蛋白質進行檢測。這種研究思路是以假說為前提的,可能產生主觀偏差;同時,由于所選擇的指標是零散的,無法得到系統(tǒng)性、整體性的結果,不能全面揭示電磁場的生物學效應,勾畫出其反應通路。一般認為,電磁場作為一種低能量的環(huán)境因素,可能通過復雜的信號傳遞過程作用于細胞,改變多個蛋白質的表達水平和/或翻譯后修飾,進而產生一系列后續(xù)效應。因此,從蛋白質組的角度研究電磁場的生物學效應是必要的。以雙向電泳作為分離技術和質譜作為鑒定技術的蛋白質組學方法能同時分離細胞內成百上千種蛋白質,并比較不同生理或病理狀態(tài)下蛋白質表達的變化,為揭示外界因素對生物體的影響和疾病發(fā)生機制等提供了一種全新的研究方法。2001年,本實驗室和芬蘭Leszczynski研究小組率先將該技術引入到電磁場生物學效應及機制的研究中。為探討電磁場對腫瘤發(fā)生的可能促進效應和比較環(huán)境中最常見的兩類電磁場作用的異同,本博士論文第一部分選擇人乳腺癌細胞株MCF-7,,采用雙向電泳技術(2-DE)研究了50 Hz極低頻磁場和1800 MHz射頻電磁場對細胞蛋白質表達的影響,建立了該細胞的電磁場蛋白質差異表達圖譜,進而利用質譜技術(MS)鑒定了部分電磁場反應蛋白質。 根據(jù)第一部分的研究結果和一些文獻的報道,我們認為有必要篩選確定電磁場作用敏感細胞,為此又設定了第二部分的研究內容。一般認為,電磁場對細胞的生物學效應受電磁場自身多因素的影響,如電磁場頻率、強度、暴露時間和模式等。然而,相對于電磁場自身因素的影響而言,生物系統(tǒng)(細胞/組織等)的來源和輻照時的具體狀態(tài)更能影響實驗的最終結果。Leszczynski等發(fā)現(xiàn)SAR為2.4 W/kg的GSM 900射頻場輻照EA.hv926細胞1小時可引起38個蛋白質的表達發(fā)生改變;而在相同條件下,EA.hy926v1細胞(EA.hy926的轉化細胞株)中有另外45個蛋白點的表達發(fā)生變化,說明射頻電磁場影響了兩種細胞中不同蛋白質的表達。Sul等將4種不同組織來源的細胞暴露于2 mT正弦磁場中,每天輻照1、3和6小時,共14天,發(fā)現(xiàn)4種細胞對電磁場的反應性不同。生物系統(tǒng)的遺傳特性決定了各生物系統(tǒng)對不同頻率電磁場的反應敏感性不同,是導致目前許多研究結果不一致的原因之一。因此,我們認為只有以電磁場敏感細胞為研究對象,才能正確揭示電磁場的生物學效應和作用機制。在本博士論文的第二部分,我們利用傳統(tǒng)雙向電泳技術進行了電磁場相對敏感細胞的篩選,以為今后的深入研究奠定基礎。 第一部分:應用雙向電泳技術研究電磁場對人乳腺癌細胞蛋白質表達的影響 流行病學調查顯示極低頻電磁場暴露可引起乳腺癌發(fā)病率增高。在以往研究的基礎上,我們選用50 Hz 0.4 mT正弦磁場對人乳腺癌細胞MCF-7進行輻照和假輻照處理24小時,提取總蛋白質進行雙向電泳。銀染圖譜經(jīng)PDQuest7.1軟件分析顯示,磁場輻照組中有6個蛋白質斑點的表達量發(fā)生顯著改變,同時,在磁場輻照組中有19個蛋白點消失和19個蛋白點新出現(xiàn)。3個差異表達的蛋白質斑點經(jīng)LC-ESI-IT串聯(lián)質譜分析,鑒定為RNA結合蛋白調節(jié)亞基、蛋白酶體β亞基7型前體和翻譯調控腫瘤蛋白。 為系統(tǒng)研究射頻電磁場對MCF-7細胞蛋白質表達的影響,選擇不同時間(1、3、6、12和24小時)、不同強度(SAR為2或3.5 W/kg)、不同輻照模式(5 min-on/10 min-off或連續(xù)輻照)的217 Hz調制的全球移動通訊系統(tǒng)(GSM)1800 MHz射頻電磁場輻照細胞,然后提取總蛋白質進行雙向電泳。結果顯示,在本實驗條件下,1800 MHz射頻電磁場對MCF-7細胞蛋白質表達譜有一定影響,但不明顯,且依賴于電磁場暴露的強度、時間和模式。在上述基礎上,選擇作用較為明顯的實驗參數(shù)(SAR為3.5 W/kg,間斷輻照3小時)對MCF-7細胞進行輻照,提取總蛋白質進行熒光差異雙向電泳(DIGE)。采用“Decyder”軟件進行分析,發(fā)現(xiàn)5個蛋白質點表達受電磁場作用上調。三個蛋白經(jīng)MALDI-TOF/TOF質譜鑒定為CLIC1蛋白、翻譯調控腫瘤蛋白和硫醇特異性抗氧化蛋白。另外兩個蛋白未得到鑒定。 第二部分:應用雙向電泳技術篩選電磁場敏感細胞 選用來源于不同物種或組織的細胞,包括中國倉鼠肺成纖維細胞CHL、小鼠胚胎成纖維細胞NIH3T3、大鼠腎上腺嗜鉻細胞PC12、人眼晶狀體上皮細胞SRA01/04、人羊膜上皮細胞FL、人早幼粒白血病細胞HL60和人皮膚成纖維細胞HSF分別暴露于0.4 mT的50 Hz磁場24小時或SAR為3.5 W/kg的1800 MHz射頻電磁場間斷輻照3小時后,立即提取全蛋白,進行雙向電泳。結果顯示,工頻磁場輻照后,PC12和FL細胞中分別檢測到差異表達蛋白點共14個和23個,分別占總檢測蛋白點數(shù)2.2%和3.2%,而在其余細胞中僅檢測到小于1.4%的蛋白質表達發(fā)生變化;射頻電磁場輻照后,NIH3T3、FL和HL60細胞中分別檢測到表達差異蛋白點共20個、23個和17個,分別占總檢測蛋白點數(shù)2.4%、3.5%和2.0%,在其余細胞中僅檢測到小于1.3%的蛋白質表達發(fā)生變化。根據(jù)檢測到的差異點數(shù)量及其占總檢測蛋白質點數(shù)的百分比,結合第一部分結果,初步認為在本實驗條件下,MCF-7、PC12和FL細胞為工頻磁場的相對敏感細胞,NIH3T3、FL和HL60細胞為射頻電磁場的相對敏感細胞。 結論: 1.0.4 mT50 Hz磁場可誘導人乳腺癌細胞MCF-7蛋白質表達譜發(fā)生顯著改變。已鑒定的三個差異蛋白和細胞骨架結構存在一定聯(lián)系,提示細胞骨架很可能是電磁場作用的靶標。 2.1800 Mnz射頻電磁場處理并不能顯著改變MCF-7細胞的蛋白質表達模式,提示MCF-7細胞對較高頻率的射頻電磁場反應性較弱。同時,該弱作用受電磁場輻照強度、作用時間和作用模式等參數(shù)的影響。 3.細胞遺傳和/或表觀遺傳(epigenetic)背景決定了其對電磁場的敏感性。在本實驗條件下,MCF-7、PC12和FL細胞為工頻磁場的相對敏感細胞,NIH3T3、FL和HL60細胞為射頻電磁場的相對敏感細胞。不同細胞對電磁場的敏感性不同,同種細胞對不同頻段的電磁場反應也可以不一樣。 4.蛋白質組學技術可以應用于電磁場生物學效應及機制研究。但由于環(huán)境低強度電磁場是一種弱作用因素,易受外界其它因素和細胞本身狀態(tài)的影響;而蛋白質組學這種高通量技術本身是以犧牲敏感性為代價的,在應用于低強度電磁場這種弱效應研究的過程中,還存在一定的不足。因此,一方面需探索發(fā)展更靈敏、更高通量的技術;另一方面需通過國際合作,探索建立蛋白質組學技術在電磁場生物學效應研究中應用的技術標準和規(guī)范。從目前的情況看,由于蛋白質學技術本身存在的局限性,對所獲得的結果還需謹慎對待,并應通過低通量的常規(guī)方法驗證。 5.通過對傳統(tǒng)雙向電泳技術與DIGE技術的比較,我們認為DIGE技術在電磁場應用中并不比傳統(tǒng)雙向電泳具有更大的優(yōu)勢。 本博士論文的創(chuàng)新點: 1.在國際上率先采用蛋白質組學技術進行了電磁場對人乳腺癌細胞蛋白質表達影響的研究及電磁場敏感細胞的篩選工作,在技術手段上有所創(chuàng)新。 2.首次在國際上報道0.4 mT 50 Hz磁場可誘導人乳腺癌細胞MCF-7蛋白質表達譜發(fā)生顯著改變,并鑒定了3個差異蛋白。 3.首次從蛋白質組學的角度證明MCF-7細胞對1800 MHz射頻電磁場的反應性較弱。 4.在國際上首次利用蛋白質組學技術篩選了電磁場的敏感細胞,確定在本實驗條件下,MCF-7細胞、PC12細胞和FL細胞為工頻磁場的相對敏感細胞;NIH3T3細胞、FL細胞和HL60細胞為射頻電磁場的相對敏感細胞。 5.通過對兩類電磁場的平行研究,證明不同細胞對電磁場的敏感性不同,而同一種細胞對不同電磁場的反應不同。
[Abstract]:With the rapid development of wireless communication technology and electric power industry, electromagnetic radiation has become one of the fastest growing and most common factors in the environment. The awareness and prevention of its health hazards are related to the sustainable development of science and technology, economy and society in China. An epidemiological survey shows that exposure to ELF EMF can cause leukemia. The incidence of breast cancer and other diseases increases; radio frequency electromagnetic field (RF EMF) exposure of mobile phones can affect the function of the central nervous system and lead to malignant lesions such as brain tumors. These epidemiological findings promote the study of the biological effects and mechanisms of the electromagnetic field on the organism. In vivo, in vitro experimental research suggests that low intensity electromagnetic fields are to God. Through the system, the reproductive system and the immune system can have a certain effect, but there are also a large number of negative reports that cause no correct assessment of the health risk of the electromagnetic field. The cause of this is the original physical process of the electromagnetic field and the biological action, the biological reaction caused and the biological effects. There is a certain blindness in the study of the biological effects of electromagnetic fields. Therefore, it is an urgent problem to be solved to reveal the biological effects and mechanism of the low intensity electromagnetic field.
Various physiological and biochemical changes produced by the electromagnetic radiation of the biological system may involve the regulation of gene expression. Some studies have found that electromagnetic fields can change the mRNA level of proto oncogene, apoptosis related gene, cyclical regulation gene and so on, such as the extremely low frequency electromagnetic field can induce the transcription of the proto oncogene c-myc, c-jun and c-fos, and change the mouse embryonic stem cells Apoptosis related genes Bcl-2 and Bax, cell cycle regulation related gene GADD45 transcription: a certain intensity radio frequency electromagnetic field can down regulate the expression of neuron specific Nurrl gene and up regulate the level of Bax, GADD45 mRNA; low frequency electromagnetic field intermittent irradiation can increase the level of c-jun, p21 and Egr-1 mRNA in p53 deficient cells, but wild type cells are not affected Effect: 1710 MHz radio frequency electromagnetic field can significantly increase the transcription of Hsp70 mRNA in p53 deficient cells, and make c-Jun, c-myc and p21 mRNA increase at a low speed.
The function of the gene in the organism is embodied at the level of the protein at the end of the cell, so the law of life activity can be revealed from the point of view of the protein. The effect of electromagnetic field on the expression of cell protein is not much, mainly focused on the guanosine decarboxylase ODC, the heat shock protein HSP27 / 70 and some signal transduction The influence of the posttranslational modifications, such as the expression levels of PKA, PKC, TPK, MAPK, or phosphorylation of the signal molecules. However, in these studies, the experimenters usually choose the target and mechanism according to the possible effect of the effect of the electromagnetic field, and choose the related single or several proteins to detect. This research idea is based on hypothesis. It may produce subjective deviations, and at the same time, because the selected indexes are scattered and cannot be systematical and integral, they can not fully reveal the biological effects of the electromagnetic field and draw out their reaction pathways. Generally, the electromagnetic field, as a low energy environmental factor, may act on a complex signal transmission process. It is necessary to study the biological effects of the electromagnetic field from the point of view of the proteome. The proteomics method using two dimensional electrophoresis as a separation technique and a mass spectrometry as an identification technique can simultaneously separate hundreds of different kinds of cells. Protein, and compared the changes in protein expression in different physiological or pathological conditions, provides a new method to reveal the influence of external factors on organisms and the pathogenesis of disease.2001. This technology is first introduced by our laboratory and the Finland Leszczynski research team to study the biological effects and mechanisms of electromagnetic fields. In order to explore the possible promotion effect of electromagnetic field on the occurrence of tumor and the similarities and differences of the most common two kinds of electromagnetic fields in the comparative environment, the first part of this thesis selected human breast cancer cell line MCF-7, and studied the effect of 50 Hz extremely low frequency magnetic field and 1800 MHz radio frequency electromagnetic field on the expression of protein in human breast cancer cell line (2-DE). A differential expression map of electromagnetic fields in the cell was established, and some electromagnetic field reaction proteins were identified by mass spectrometry (MS).
According to the results of the first part of the study and the reports in some literature, we think it is necessary to screen and determine the sensitive cells of the electromagnetic field, and to this end, we have set up a further second part of the study. It is generally believed that the biological effects of electromagnetic fields on the cell are affected by the multiple factors of the electromagnetic field itself, such as electromagnetic frequency, intensity, exposure time and mode. However, relative to the influence of the electromagnetic field itself, the source of the biological system (cell / tissue, etc.) and the specific state of irradiation can affect the final result of the experiment.Leszczynski and so on. The expression of 38 proteins can be changed by irradiating EA.hv926 cells of the GSM 900 field of 2.4 W / kg, and the expression of 38 proteins can be changed in 1 hours. Under the same condition, the expression of 45 other protein spots in EA.hy926v1 cells (EA.hy926 transformed cell line) showed that radio frequency electromagnetic fields affected the expression of different proteins in two cells,.Sul and other cells exposed to 4 different tissue sources in the 2 mT sinusoidal magnetic field, irradiated for 1,3 and 6 hours a day for 14 days, and 4 cells were found. The response to electromagnetic fields is different. The genetic characteristics of biological systems determine that the sensitivity of various biological systems to different frequencies of electromagnetic fields is different, which is one of the reasons why many research results are inconsistent. Therefore, we think that the biological effects of electromagnetic fields can be correctly revealed only by using electromagnetic field sensitive cells as the study of the image. In the second part of this doctoral thesis, we use the traditional two-dimensional electrophoresis technology to screen the relative sensitive cells of the electromagnetic field, which will lay the foundation for further research.
Part I: two dimensional electrophoresis was used to study the effect of electromagnetic fields on protein expression in human breast cancer cells.
The epidemiological investigation showed that the exposure of the extremely low frequency electromagnetic field could cause the increase of the incidence of breast cancer. On the basis of previous studies, we used 50 Hz 0.4 mT sinusoidal magnetic field to irradiate and irradiate the human breast cancer cell MCF-7 for 24 hours, and extract the total protein for two-dimensional electrophoresis. The silver staining atlas was analyzed by PDQuest7.1 software, and the magnetic field was shown. The expression of 6 protein spots in the irradiated group changed significantly. At the same time, 19 protein spots disappeared in the magnetic field irradiation group and the protein spots of the 19 protein spots appeared on the 19 protein spots. The protein spots were analyzed by LC-ESI-IT tandem mass spectrometry, which were identified as the RNA binding protein regulating subunit, the proteasome beta subunit 7 precursor and the regulation of the tumor eggs. White.
In order to systematically study the effect of radio frequency electromagnetic field on the protein expression of MCF-7 cells, select different intensities (1,3,6,12 and 24 hours), different intensities (SAR 2 or 3.5 W / kg), 217 Hz modulated global mobile communication system (GSM) 1800 MHz (GSM) 1800 MHz radio-frequency electromagnetic field irradiated by 217 Hz (5 min-on / 10 min-off or continuous irradiation), and then extract the total number of cells. The results showed that the 1800 MHz radiofrequency electromagnetic field had a certain influence on the protein expression profiles of MCF-7 cells in this experimental condition, but it was not obvious and depended on the intensity, time and mode of electromagnetic field exposure. On the basis of the above, the experimental parameters (SAR 3.5 W / kg, intermittent irradiation for 3 hours) were selected. MCF-7 cells were irradiated, and total protein was extracted by fluorescence differential two-dimensional electrophoresis (DIGE). Using "Decyder" software, the expression of 5 protein points was up regulated by electromagnetic field. Three proteins were identified as CLIC1 protein through MALDI-TOF / TOF mass spectrometry, and two other protein and thiol specific antioxidant protein were translated and regulated. The protein was not identified.
The second part: two dimensional electrophoresis is used to screen electromagnetic field sensitive cells.
Cells derived from different species or tissue, including Chinese hamster lung fibroblast CHL, mouse embryonic fibroblast NIH3T3, rat adrenal chromaffin cell PC12, human eye lens epithelial cells SRA01 / 04, human amniotic epithelial cells FL, human promyelocytic leukemic cells HL60 and human skin fibroblasts HSF respectively exposed to 0.4 mT 50 Hz magnetic field 24 hours or SAR 3.5 W / kg 1800 MHz radiofrequency electromagnetic field irradiated for 3 hours after 3 hours, the total protein was extracted and two-dimensional electrophoresis. The results showed that after the frequency magnetic field irradiation, there were 14 and 23 differentially expressed proteins in PC12 and FL cells respectively, which accounted for 2.2% and 3.2% of the total detection protein points, respectively, and in the rest of the cells. Only less than 1.4% of protein expression was detected. After radiofrequency electromagnetic radiation, 20, 23 and 17 differentially expressed protein points were detected in NIH3T3, FL and HL60 cells. The total protein points were 2.4%, 3.5% and 2%, respectively. The protein expression of less than 1.3% was detected in the rest of the cells. According to the number of detected difference points and the percentage of the total detected protein points, combined with the results of the first part, it is preliminarily believed that under this experimental condition, MCF-7, PC12 and FL cells are relatively sensitive cells of the frequency magnetic field, and NIH3T3, FL and HL60 cells are relatively sensitive cells of the radio frequency electromagnetic field.
Conclusion:
The 1.0.4 mT50 Hz magnetic field can induce significant changes in MCF-7 protein expression profiles in human breast cancer cells. There is a certain connection between the three differential proteins identified and the cytoskeleton structure, suggesting that the cytoskeleton may be a target for the effect of electromagnetic fields.
2.1800 Mnz radiofrequency electromagnetic field treatment does not significantly alter the protein expression patterns of MCF-7 cells, suggesting that MCF-7 cells have a weak response to a high frequency electromagnetic field, and the weak effect is influenced by the intensity of electromagnetic radiation, the time and mode of action.
3. cell inheritance and / or epigenetic (epigenetic) background determines its sensitivity to electromagnetic fields. Under this experimental condition, MCF-7, PC12 and FL cells are relatively sensitive cells of the frequency magnetic field, NIH3T3, FL and HL60 cells are relatively sensitive cells of the radio frequency electromagnetic field. Different cell cells have different sensitivity to electromagnetic fields, and the same cells are different The electromagnetic field reaction in the frequency band can also be different.
4. proteomics technology can be applied to the study of the biological effects and mechanisms of electromagnetic fields. However, because the low intensity electromagnetic field is a weak factor, it is easily affected by other factors and the state of the cell itself; and the high throughput technology of proteomics is at the expense of sacrificial sensibility and is applied to low intensity electricity. There are still some shortcomings in the study of this weak effect. Therefore, it is necessary to explore the technology of developing more sensitive and higher flux. On the other hand, we need to explore the technical standards and specifications for the application of proteomics technology in the study of the biological effects of electromagnetic fields through international cooperation. The limitations of the technology itself should be treated with caution and should be verified through low flux conventional methods.
5. by comparing traditional two-dimensional electrophoresis with DIGE technology, we think that DIGE technology is not more advantageous than traditional two-dimensional electrophoresis in the application of electromagnetic field.
The innovation of this doctoral thesis:
1. the study on the effect of electromagnetic field on the expression of protein in human breast cancer cells and the screening of electromagnetic sensitive cells were carried out by proteomics technology in the world, and the technical means have been innovated.
2. for the first time, it is reported internationally that 0.4 mT 50 Hz magnetic field can induce MCF-7 protein in human breast cancer cells.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2007
【分類號】:R35

【參考文獻】

相關期刊論文 前10條

1 陳永斌,曾桂英,任東青,張杰,張發(fā)科;J005A電磁波屏蔽織物對2450 MHz微波輻照小鼠骨髓細胞的影響[J];第四軍醫(yī)大學學報;2003年02期

2 陳永娟,陳宇煉,翁念農;低強度微波對小鼠免疫毒性的研究[J];環(huán)境與健康雜志;1997年03期

3 銀濤;寧竹之;;亞慢性微波輻照的免疫學劑量—效應探討[J];解放軍預防醫(yī)學雜志;1993年05期

4 張鶴梧,劉慶川,冷沙力;微波站低場強微波對人體免疫球蛋白的影響[J];中國輻射衛(wèi)生;1995年01期

5 俞利榮,曾嶸,夏其昌;蛋白質組研究技術及其進展[J];生命的化學;1998年06期

6 黃春明,葉暉,徐建華,林家瑞,瞿安連;極低頻弱磁場對PC-12瘤細胞胞內游離鈣離子濃度的影響[J];生物醫(yī)學工程學雜志;2000年01期

7 黃文天,陳成章;低強度微波作用時動物腎上腺皮質激素與脾抗體形成細胞反應的相互關系[J];衛(wèi)生毒理學雜志;1991年02期

8 陳成章,Sol.M.Michaelson;微波全身照射對帶腫瘤和非帶腫瘤大鼠免疫反應的影響[J];職業(yè)醫(yī)學;1989年03期

9 孫文均,余應年,姜槐,付一提,魯?shù)聫?工頻磁場對P38絲裂原活化的蛋白激酶磷酸化的誘導作用[J];中華勞動衛(wèi)生職業(yè)病雜志;2002年04期

10 劉峗,喻云梅,翁恩琪;極低頻電磁場對小鼠腦和肝臟c-fos mRNA水平的影響[J];中華勞動衛(wèi)生職業(yè)病雜志;2003年05期



本文編號:1968740

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/binglixuelunwen/1968740.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶5dcca***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产欧美日产中文一区| 久久天堂夜夜一本婷婷| 麻豆视传媒短视频免费观看| 日韩午夜福利高清在线观看| 日韩18一区二区三区| 久久精视频免费视频观看| 美国欧洲日本韩国二本道| 日本大学生精油按摩在线观看| 国产av天堂一区二区三区粉嫩| 又色又爽又无遮挡的视频| 欧美成人欧美一级乱黄| 婷婷激情四射在线观看视频| 国产精品久久女同磨豆腐| 日本中文在线不卡视频| 午夜直播免费福利平台| 老司机精品视频在线免费| 太香蕉久久国产精品视频| 久久精品a毛片看国产成人| 国产精品内射婷婷一级二级| 欧美人妻免费一区二区三区| 国产精品欧美在线观看| 亚洲精品中文字幕无限乱码| 国产国产精品精品在线| 国产午夜精品福利免费不| 亚洲一区二区三在线播放| 日本乱论一区二区三区| 精品国产亚洲av成人一区| 久久夜色精品国产高清不卡| 精品人妻久久一品二品三品| 欧美六区视频在线观看| 国产精品福利精品福利| 日韩欧美一区二区不卡看片| 中文字幕亚洲精品在线播放| 欧美日韩视频中文字幕| 大香蕉久久精品一区二区字幕| 日本最新不卡免费一区二区| 国产一级内射麻豆91| 黄片在线免费看日韩欧美| 色哟哟国产精品免费视频| 亚洲精品蜜桃在线观看| 91偷拍视频久久精品|