天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 病理論文 >

小動(dòng)物呼吸生理實(shí)驗(yàn)中整體體積描記箱內(nèi)壓力變化的空氣動(dòng)力學(xué)研究

發(fā)布時(shí)間:2018-04-18 05:15

  本文選題:Boyle定律 + Poiseuille定律。 參考:《浙江大學(xué)》2007年博士論文


【摘要】: 研究背景 體積描記法廣泛應(yīng)用于小動(dòng)物的呼吸生理實(shí)驗(yàn)中,常用的體積描記法有整體體積描記法和雙室體積描記法,可以獲得小動(dòng)物的潮氣量等呼吸生理參數(shù)。 整體體積描記法按照測試原理的不同,又可分為壓力型體積描記法和流量型體積描記法。根據(jù)Fenn的原理,壓力型體積描記箱內(nèi)壓力變化與小動(dòng)物的潮氣量成正比。而流量型體積描記箱的測量基礎(chǔ)為Poiseuille定律,即進(jìn)出描記箱的空氣流量與壓力變化成正比。對(duì)流量變化取積分,可以得到小動(dòng)物的潮氣量。 在壓力型體積描記法測量小動(dòng)物呼吸生理數(shù)據(jù)時(shí),常用Boyle定律作為計(jì)算依據(jù)。但這一定律屬于空氣靜力學(xué)原理,其應(yīng)用的前提是理想氣體處于靜止?fàn)顟B(tài)。而小動(dòng)物在體積描記箱內(nèi)呼吸時(shí),描記箱內(nèi)空氣處于持續(xù)流動(dòng)狀態(tài),這些流動(dòng)的空氣將對(duì)體積描記箱內(nèi)施加一個(gè)附加的壓力。因此,靜力學(xué)的Boyle定律可能不適合分析和解決流動(dòng)空氣問題。 Poiseuille定律的使用前提是流動(dòng)空氣通過固定的規(guī)則的通道、且氣流處于層流狀態(tài)。而在描記箱內(nèi),空氣先有一個(gè)壓縮過程,且描記箱的規(guī)格與描記箱的出口規(guī)格相差甚遠(yuǎn),流動(dòng)空氣在描記箱內(nèi)顯然處于紊流而非層流狀態(tài)。因此,空氣在描記箱中的流動(dòng)和壓縮可能影響Poiseuille定律在計(jì)算時(shí)的使用。 我們首次提出從空氣動(dòng)力學(xué)考慮描記箱內(nèi)壓力變化問題,包括空氣在其中的壓縮和流動(dòng)對(duì)壓力變化的作用。 研究目的 本研究中,我們試圖從空氣動(dòng)力學(xué)角度解釋體積描記箱內(nèi)壓力變化問題。 1.在討論壓力型體積描記箱內(nèi)壓力變化方面,我們從理論推導(dǎo)及實(shí)驗(yàn)兩方面證明Boyle定律不適合于小動(dòng)物的容量變化的計(jì)算以及空氣在描記箱內(nèi)流動(dòng)會(huì)產(chǎn)生附加的壓力變化,并給出初步的關(guān)于壓力變化的空氣動(dòng)力學(xué)相關(guān)公式。 2.從理論和實(shí)驗(yàn)兩方面證明Poiseuille定律在計(jì)算容量變化時(shí)存在缺陷,空氣在描記箱內(nèi)流動(dòng)會(huì)影響壓力變化積分的計(jì)算。 研究方法 在研究的第一部分,我們先從空氣動(dòng)力學(xué)角度,由理論上推導(dǎo)壓力型體積描記箱內(nèi)壓力變化的公式。然后設(shè)計(jì)3個(gè)實(shí)驗(yàn)證實(shí)理論推導(dǎo)。 實(shí)驗(yàn)1:往體積描記箱內(nèi)注入0.1ml,0.2ml,和0.4ml空氣,并測量壓力變化,以證實(shí)空氣的流動(dòng)是否影響壓力型體積描記箱內(nèi)壓力變化。 實(shí)驗(yàn)2:往體積描記箱內(nèi)輸入不同容量和頻率的空氣,以觀察當(dāng)氣體輸入在不同頻率時(shí)描記箱內(nèi)的壓力是否不同,即證明空氣流動(dòng)的速度對(duì)壓力的影響。 實(shí)驗(yàn)3:用呼吸機(jī)和微量加樣器制造不同類型的流量,再利用二者以固定頻率相同容量往體積描記箱內(nèi)通氣,驗(yàn)證不同流量產(chǎn)生的壓力變化是否不同。 研究的第二部分,我們同樣先從理論上對(duì)流量型體積描記箱內(nèi)壓力變化的積分推導(dǎo)出相應(yīng)的公式,再從實(shí)驗(yàn)方面進(jìn)行證明。 實(shí)驗(yàn)4:用小動(dòng)物呼吸機(jī)以不同容量在不同頻率下向體積描記箱內(nèi)通氣,以觀察空氣在其中流動(dòng)的速度快慢是否對(duì)壓力變化積分有作用。 實(shí)驗(yàn)5:用呼吸機(jī)和微量加樣器制造不同類型的流量,利用二者以固定頻率相同容量往體積描記箱內(nèi)通氣,驗(yàn)證不同流量產(chǎn)生的壓力變化積分是否不同。 研究結(jié)果 第一部分的理論推導(dǎo)結(jié)果表明,空氣輸入體積描記箱后產(chǎn)生的壓力變化主要來源于兩方面:其一是遵循Boyle定律,另一部分基于動(dòng)量守恒定律。同時(shí),當(dāng)輸入氣體的流量是時(shí)間的不同函數(shù)時(shí),體積描記箱內(nèi)壓力變化仍將不同。 實(shí)驗(yàn)1:在空氣注入壓力型體積描記箱后,描記箱內(nèi)壓力迅速上升至一個(gè)高峰,然后下降至一個(gè)高于0cmH_2O的基線壓,峰壓顯著高于基線壓(P<0.001)。 實(shí)驗(yàn)2:隨著流動(dòng)空氣的頻率增加,描記箱內(nèi)壓力變化幅度亦增加,不同頻率通氣產(chǎn)生的壓力變化之間具有顯著性統(tǒng)計(jì)學(xué)差異(P<0.001)。 實(shí)驗(yàn)3:以相同的0.5HZ頻率相等的容量注入空氣時(shí),小動(dòng)物呼吸機(jī)產(chǎn)生的壓力變化幅度顯著高于微量加樣器(P<0.001)。呼吸機(jī)產(chǎn)生的流量曲線幾乎為水平線,而微量加樣器的流量曲線明顯為非直線型,,與呼吸機(jī)的流量顯著不同。 第二部分的研究對(duì)象為流量型體積描記箱內(nèi)壓力變化的積分。我們的理論推導(dǎo)結(jié)果表明,描記箱內(nèi)壓力積分并不與空氣的容量變化成正比,而受輸入空氣容量和頻率共同影響。而且,當(dāng)流量變化為時(shí)間的不同函數(shù)時(shí),體積描記箱內(nèi)壓力積分也將不同。 實(shí)驗(yàn)4:隨著通氣頻率的增加描記箱內(nèi)壓力變化的積分變小。重復(fù)測量方差分析顯示,在容量主效應(yīng)(F=39885.639,P<0.001)和頻率主效應(yīng)(F=1083.922,P<0.001)均存在顯著性差異。在每兩個(gè)頻率組間存在顯著性差異(P<0.001)。 實(shí)驗(yàn)5:盡管以同樣容量0.5HZ頻率向體積描記箱內(nèi)通氣時(shí),小動(dòng)物呼吸機(jī)產(chǎn)生的壓力積分與微量加樣器顯著不同(F=8066.266,P<0.001)。 結(jié)論 1.當(dāng)用壓力型體積描記法測量小動(dòng)物容量變化時(shí),Boyle定律并不能成立,即此時(shí)壓力變化不與容量變化成正比。流動(dòng)空氣會(huì)產(chǎn)生一個(gè)附加壓力,后者遵循空氣動(dòng)力學(xué)原理。 2.壓力型體積描記箱內(nèi)空氣變化的容量和速度共同導(dǎo)致壓力變化,而且,空氣變化的流量類型也顯著影響描記箱內(nèi)壓力變化。 3.用流量型體積描記法測量小動(dòng)物容量變化時(shí),Poiseuille定律并不完全適合于潮氣量的計(jì)算。 4.流量型體積描記箱內(nèi)變化空氣的容量和速度共同作用于該描記箱內(nèi)壓力變化積分。變化空氣的流量類型也顯著地影響壓力變化的積分。 5.當(dāng)用整體體積描記法測量小動(dòng)物的肺功能時(shí),應(yīng)更多從流體力學(xué)原理出發(fā)考慮壓力和容量變化,以獲得潮氣量或其他容量的精確計(jì)算。
[Abstract]:Background of the study









Volume tracing method is widely used in the respiration physiology experiment of small animals , and the commonly used volume tracing method has the whole volume tracing method and the double - chamber volume tracing method , so that the respiratory physiological parameters such as tidal volume of small animals can be obtained .









According to Fenn ' s principle , the pressure change is proportional to the tidal volume of small animals .









This law belongs to the principle of aerostatic mechanics . However , the law belongs to the principle of aerostatic mechanics , and the premise of the application is that the ideal gas is in a stationary state .









however , that flow and compression of the air in the stroke tank may affect the use of Poiperiille ' s law at the time of calculation .









We first put forward the question of pressure change from aerodynamics into account , including the effect of compression and flow of air on the pressure change .









Purpose of study









In this study , we try to explain the problem of pressure change in a volume graph from an aerodynamic angle .









1 . In discussing the pressure changes in the barograph box , we prove that the calculation of the volumetric changes in the small animals is not suitable for the calculation of the change of the capacity of the small animals and the flow of the air in the tracing box can produce additional pressure changes from the theoretical derivation and the experiment , and the preliminary aerodynamic correlation formula for pressure change is given .









2 . From two aspects of theory and experiment , it is proved that Poiperiille ' s law has defects in the calculation of capacity change , and the flow of air in the tracing box can affect the calculation of the integral of pressure change .









Research Methods









In the first part of the study , we first derive the formula of pressure change in the pressure - type volume graph from the aerodynamic angle , and then design 3 experiments to confirm the theoretical derivation .









Experiment 1 : 0.1 ml , 0.2 ml , and 0.4 ml of air were injected into the volume graph , and the pressure changes were measured to confirm whether the flow of air affected the pressure change in the pressure type volume stroke tank .









Experiment 2 : Enter different volume and frequency air into the volume graph box to observe whether the pressure in the stroke tank is different when the gas is input at different frequencies , that is , the influence of the velocity of the air flow on the pressure is proved .









Experiment 3 : The ventilator and microinjector were used to manufacture different types of flow , and the same volume of the fixed frequency was used for ventilation in the volume tracing box to verify whether the pressure changes caused by different flow rates were different .









In the second part of the study , we also derive the corresponding formula from the theory of the integral of the pressure change in the flow - type volume graph , and then prove it from the experimental aspect .









Experiment 4 : A small animal ventilator is used to ventilate the volume stroke tank at different frequency under different frequency , so as to observe whether the velocity of the air flow is slow or not and the integral of the pressure change has effect .









Experiment 5 : The ventilator and microinjector were used to manufacture different types of flow . Both of them were ventilated with the same capacity of fixed frequency to the volume tracing box to verify whether the pressure change points produced by different flow rates were different .









Results of the study









The theoretical derivation of the first part shows that the changes of the pressure generated after the air input volume stroke are mainly derived from two aspects : one is to follow the law of boyle and the other is based on the law of conservation of momentum . At the same time , when the flow rate of the input gas is a different function of time , the pressure change in the volume stroke tank will still be different .









Experiment 1 : After air injection into the pressure type volume tracing box , the pressure in the stroke box rapidly increased to a peak , then decreased to a baseline pressure higher than 0 cmH _ 2O , and the peak pressure was significantly higher than the baseline pressure ( P & lt ; 0.001 ) .









Experiment 2 : With the increase of the frequency of the flowing air , the amplitude of the pressure change in the stroke box also increased , and there was a significant difference between the changes of pressure in different frequency ventilation ( P & lt ; 0.001 ) .









Experiment 3 : When injecting air at equal volume of 0.5HZ , the amplitude of pressure change produced by ventilator was significantly higher than that of microinjector ( P < 0 . 001 ) . The flow curve generated by ventilator was almost horizontal line , and the flow curve of microinjector was obviously non - linear , which was significantly different from that of ventilator .









The research object of the second part is the integral of the pressure change in the flow - type volume graph . The theoretical deduction results show that the pressure integral in the stroke tank is not directly proportional to the change of the capacity of the air , but is influenced by the capacity and frequency of the input air . Furthermore , when the flow changes to different functions of time , the pressure integral in the volume stroke tank will also be different .









Experiment 4 : With the increase of ventilation frequency , the integral of pressure change in the box became smaller . The repeated measurement variance analysis showed that there was a significant difference between the main effect of capacity ( F = 39885.639 , P < 0.001 ) and the main frequency effect ( F = 1083.922 , P < 0.001 ) . There was a significant difference between the two groups ( P < 0.001 ) .









Experiment 5 : The pressure integration produced by the small animal ventilator was significantly different from that of the microinjector ( F = 8066.266 , P < 0.001 ) , although ventilation was performed at the same capacity of 0.5 Hz to the volume stroke tank .









Conclusion









1 . When measuring the change of the capacity of a small animal by a pressure - type volume tracing method , the law of boyle cannot be established , that is , the pressure change is not proportional to the change in capacity at this time . The flowing air creates an additional pressure which follows the principle of aerodynamics .









2 . The volume and velocity of the changes in the air in the pressure - type volume graph cause the pressure change , and the flow type of the air change also significantly affects the pressure change in the stroke tank .









3 . When the volume change of small animals is measured by the flow - type volume tracing method , the Poiperiille ' s law is not completely suitable for the calculation of tidal volume .









4 . The volume and velocity of the variable air in the flow volume graph are combined to the pressure change integral in the box . The flow rate of the variable air also significantly affects the integral of the pressure change .









5 . When measuring the lung function of a small animal by an overall volume tracing method , the changes in pressure and capacity shall be taken into account from the fluid mechanics principle to obtain accurate calculation of tidal volume or other capacity .

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2007
【分類號(hào)】:R33

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 丁武;沈華浩;;小鼠氣道反應(yīng)性的測定[J];中國病理生理雜志;2006年12期



本文編號(hào):1766946

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/binglixuelunwen/1766946.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶371ba***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
美女被啪的视频在线观看 | 精品欧美在线观看国产| 亚洲中文在线观看小视频| 深夜少妇一区二区三区| 性欧美唯美尤物另类视频| 欧美日韩亚洲国产综合网| 精品日韩视频在线观看| 亚洲天堂精品1024| 黄男女激情一区二区三区| 字幕日本欧美一区二区| 九九热视频网在线观看| 欧美一区二区三区视频区| 免费在线成人激情视频| 天堂av一区一区一区| 午夜福利精品视频视频| 亚洲精品国男人在线视频| 麻豆最新出品国产精品| 在线欧洲免费无线码二区免费| 国产精品视频第一第二区| 日本人妻免费一区二区三区| 91久久精品国产一区蜜臀| 亚洲精品福利视频在线观看| 国产精品不卡一区二区三区四区| 国产亚洲精品岁国产微拍精品| 97人摸人人澡人人人超碰| 亚洲熟妇熟女久久精品 | 成人免费高清在线一区二区| 大香蕉伊人精品在线观看| 色好吊视频这里只有精| 色哟哟国产精品免费视频| 精品午夜福利无人区乱码| 激情内射亚洲一区二区三区| 欧美人妻一区二区三区| 中文字幕日韩精品人一妻| 亚洲精品中文字幕熟女| 中文人妻精品一区二区三区四区| 久久精品色妇熟妇丰满人妻91| 欧美一区二区三区十区| 女同伦理国产精品久久久| 四十女人口红哪个色好看| 人妻内射在线二区一区|