天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 病理論文 >

考慮免疫反應的病毒動力學模型的全局性態(tài)

發(fā)布時間:2018-01-15 08:12

  本文關鍵詞:考慮免疫反應的病毒動力學模型的全局性態(tài) 出處:《西南大學》2006年碩士論文 論文類型:學位論文


  更多相關文章: 病毒動力學模型 免疫反應 全局穩(wěn)定性 免疫反應損害 隨機穩(wěn)定性


【摘要】:本文主要研究了考慮免疫反應的病毒動力學模型的全局性態(tài)。第一章研究了考慮抗體免疫反應的病毒動力學模型的全局性態(tài)。我們證明了當基本再生數(shù)R_0≤1,病毒在體內清除;而R_01時,病毒在體內持續(xù)生存,并且模型的正解當抗體免疫再生數(shù)R_1≤1時趨于無免疫平衡點,R_11時趨于正平衡點。 第二章研究了兩個考慮CTL免疫反應的病毒動力學模型性態(tài)。當考慮宿主體內健康細胞增長函數(shù)為線性時,我們證明了當基本再生數(shù)R_0≤1,病毒在體內清除;而R_01時,病毒在體內持續(xù)生存,并且模型的正解當抗體免疫再生數(shù)R_1≤1時趨于無免疫平衡點,R_11時趨于正平衡點。而假設健康細胞增長函數(shù)為logistic型時,我們發(fā)現(xiàn)當基本再生數(shù)R_0≤1,病毒在體內被清除;而R_01時,病毒在體內持續(xù)生存。在無免疫平衡點和正平衡點存在的條件下,我們得到了它們漸近穩(wěn)定的充分條件。在這些條件不滿足時,數(shù)值模擬分析出在一定參數(shù)條件下,系統(tǒng)會產(chǎn)生Hopf分支或者復雜的動力學性態(tài)。 第三章我們綜合考慮了抗體免疫反應和CTL免疫反應,研究了一個五維ODE模型的全局性態(tài)。我們證明了基本再生數(shù)R_0,CTL免疫再生數(shù)R_1,抗體免疫再生數(shù)R_2,CTL免疫競爭再生數(shù)R_3,抗體免疫競爭再生數(shù)R_4決定了模型的全局性態(tài)。若R_0≤1,病毒在體內清除。若R_01,正解在R_1≤1且R_2≤1時趨于無免疫平衡點,在R_11且R_4≤1時趨于CTL主導平衡點,在R_21且R3≤1時趨于抗體主導平衡點,在R_31且R_41時,趨于正平衡點。 第四章我們研究了在免疫反應損害情況下的細胞-細胞病毒動力學模型的確定穩(wěn)定性和隨機穩(wěn)定性。證明了當基本再生數(shù)R_0≤1,病毒在體內清除;而R_01時,病毒在體內持續(xù)生存,并且模型的正平衡點在隨機擾動下也是穩(wěn)定的。
[Abstract]:This paper mainly studies the global properties of virus dynamics model with immune response. The first chapter studies the virus dynamics model with immune response to the global state. We prove that when the basic reproduction number R_0 is less than 1, the virus clearance in vivo; R_01, viral persistence in vivo survival, and the model is solution when the antibody reproduction number is less than or equal to 1 when R_1 tends to have no immune balance, steady R_11.
The second chapter studies two virus dynamics with CTL immune response model. When considering the health of the host cells in vivo growth function is linear, we prove that when the basic reproduction number R_0 is less than 1, the virus clearance in vivo; R_01, virus persistence, and the model of positive solution of the immune antibody the number of R_1 is less than 1 when the regeneration tends to have no immune balance, steady R_11. And the hypothesis of healthy cells growth of logistic type, we found that when the basic reproduction number R_0 is less than 1, the virus in the body; and R_01, virus persistence. In the presence of immune free equilibrium and positive equilibrium conditions, we obtain sufficient conditions for their asymptotic stability. In these conditions is not satisfied, the numerical simulation analysis under certain parameter conditions, the system produces Hopf bifurcation or complex dynamics.
The third chapter, we consider the immune response and immune response to CTL, the global state of a five dimensional ODE model. We show that the basic reproduction number R_0 CTL number R_1 antibody immune regeneration, regeneration R_2, CTL immune antibody competitive reproduction number R_3, competition R_4 determines the overall number of students state model. If R_0 is less than 1, the virus clearance in vivo. If the R_01 is in R_1 less than or equal to 1 and less than or equal to 1 when R_2 tends to have no immune balance in R_11 and R_4 < 1 CTL leading tends to equilibrium, in R_21 and R3 less than 1 is to dominate equilibrium in the R_31 antibody, and R_41 when tends to an equilibrium point.
The fourth chapter, we study the immune response in the absence of cell damage cell virus dynamics model to determine the stability and stochastic stability. It is proved that if the basic reproduction number R_0 is less than 1, the virus clearance in vivo; R_01, virus persistence, the positive equilibrium point and the model is stable under random perturbation.

【學位授予單位】:西南大學
【學位級別】:碩士
【學位授予年份】:2006
【分類號】:R392

【相似文獻】

相關碩士學位論文 前1條

1 龐海燕;考慮免疫反應的病毒動力學模型的全局性態(tài)[D];西南大學;2006年



本文編號:1427503

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/binglixuelunwen/1427503.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶c8236***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com