體外聯(lián)合培養(yǎng)體系中HUVECs對hBMSCs成骨分化的影響及其機(jī)制研究
[Abstract]:[Background and purpose of the study] The various types of bone defects due to different causes are very common in the clinic, and the problem of the repair of the defect of the jaw is always difficult to solve. Problems. The emergence and development of tissue engineering brings an opportunity for the repair of bone defects. The ultimate goal is to combine functional cells and degradable three-dimensional biological scaffold materials in vitro, to construct an active tissue or organ, Form, structure and The present tissue engineering bone construction method is multi-purpose simple seed cell inoculation, although it can be formed, the tissue engineering bone vascularization is slow, the growth of the new bone is slow, and the like. The bone marrow mesenchymal stem cells (BMSCs) have the potential of multi-directional differentiation, and can not only be differentiated into adipocytes, osteocytes, chondrocytes, cardiac muscle cells, neuron cells, myoblasts, tendon cells and star-like cells under appropriate conditions. At present, it has made great progress in the study of inducing the differentiation of only BMSCs to the osteoblast, but the induction of the differentiation of the BMSCs to the osteoblast is long, the osteogenic efficiency is low, and the cells are easy to use. In recent years, the researchers have found that endothelial cells can secrete bone morphogenetic protein (BMP), promote osteogenic differentiation, and stimulate the secretion of vascular endothelial growth factor (VEGF) in the osteoblast and its precursor cells. or, VEGF), and VEGF plays an important role in angiogenesis and formation, and can To promote the proliferation of the endothelial cells, the specific mechanism of the current vascular endothelial cells to the osteogenic differentiation of the bone marrow-derived mesenchymal stem cells is not clear. To study the effects of human umbilical vein endothelial cells (HUVECs) on human bone marrow mesenchymal stem cells (hBMSCs), the morphology, growth, cell differentiation and Bmi-1 gene and R of human bone marrow-derived mesenchymal stem cells (hBMSCs) in human umbilical vein endothelial cells (HUVECs) were discussed in this paper. The effect of unx 2 gene expression on the expression of bone marrow from vascular endothelial cells from the gene level The role of the osteogenic differentiation of the mesenchymal stem cells is the combination of the umbilical vein endothelial cells and the bone marrow mesenchymal stem cells as bone tissue engineering. fine seed The cell provides a theoretical basis.[Method] (1) The bone marrow liquid of the volunteers is extracted, and the bone marrow mononuclear cells are separated by using a density gradient centrifugation method, and the bone marrow mononuclear cells are adhered to the bottom of the plastic bottle by means of MSCs. The culture of MSCs was cultured to the third generation, and the CD34. CD29 was detected by flow cytometry. The expression of the surface antigen of CD44 was identified and the MSCs were identified; (2) the newly-ordered HUVECs was expanded to the third generation with the ECM + 10% of the new fetal calf serum, and the second generation HUVECs was set up in a 1:1 ratio with the third generation HUVECs for DME The combined culture system of M + 10% fetal calf serum was used as the negative control group for the cultured hBMSCs group and the hUVECs group. the number of hBMSCs in each group is counted by using a counting plate, and (3) the number of each group of hBMSCs is detected by a counting plate; and (3) six holes are taken at each time point of each group in groups 4,6,8 and 10 respectively to detect the alkaline in three groups of culture systems Phosphatase, AL P) and the content of Osteocin (OC). (4) Bmi of hBMSCs and hBMSCs in group 4,6,8 and 10 were detected by real-time fluorescence quantitative PCR (FQ-PCR). -1 and Runx2 gene expression,6 for each group of time points per group Hole. S The PSS17.0 software performs a statistical analysis of the detection values.[Results] (1) Use F The purification of hBMSCs can achieve higher purity by the method of density gradient centrifugation, and the third generation hMSCs were determined by flow cytometry. The analysis and identification of the cell phenotype, the low expression of CD34, the high expression of CD29. CD44, and (2) the isolation and culture of the new fetal bovine serum. the mesenchymal stem cells are in an elongated shuttle shape, the cells are small, and the cells growing in a cluster can be seen in the primary culture for 4 to 5 days; The third generation of the bone marrow-derived mesenchymal stem cells has a single form, a spindle shape, a vortex-like distribution, no cells, the hBMSCs are logarithmic growth on 4-6 days and grow into the platform stage after 8-10 days; the HUVECs are single-layer growth, the shape is polygonal, the cobblestone is embedded and arranged, the boundary is clear, the cytoplasm is rich, the nucleus is circular or elliptical, 2-3 days after the first-generation to fourth-generation growth, and 2-3 days of passage; (3) the amount of alkaline phosphatase in each group was decreased with the increase of time, the ALP of the combined culture group was higher, and the combination of 8 days was combined. The alkaline phosphatase of the culture group was the highest, and the ALP of the bone marrow mesenchymal stem cell group and the umbilical vein endothelial cell group did not change basically, and there was a significant difference between the combined culture group and the other groups (P0 .01). The amount of bone-bone detection in each group was decreased with the increase of time, and the combined culture group was cultured on 8 days. There was a significant difference between the two groups in the combined culture group and the other groups (P0.01), and (4) the combined culture group Bmi- 1. The amount of the Runx2 gene was increased with the time, and the expression of the Runx2 gene in the combined culture group was high; the Bmi-1 gene of the bone marrow-derived mesenchymal stem cell group increased slightly with the time, and the expression of the Runx2 gene was basically unchanged; the Bmi-1 and Runx2 groups in the combined culture group at the 8th day due to the amount of detection There was a significant difference between the combination culture group and the bone marrow mesenchymal stem cell group (P0.01).[Conclusion] (Conclusion] ( 1) Separation and purification of hBMSC by Ficoll density gradient centrifugation (2) bone marrow mesenchymal stem cells and umbilicus; the combined culture of the vein endothelial cells is good, the umbilical vein endothelial cells have the effect of promoting the proliferation of the bone marrow mesenchymal stem cells in the in vitro combined culture system, and (3) in vitro combination
【學(xué)位授予單位】:昆明醫(yī)學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:R329
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王榮;劉華松;張敏;楊慧;孫正;;骨髓基質(zhì)細(xì)胞及誘導(dǎo)后成骨細(xì)胞在鈦合金表面粘附率的研究[J];北京口腔醫(yī)學(xué);2006年02期
2 銀廣悅;陳素萍;王文紅;張繼領(lǐng);張龍;張明;;5-氮胞苷與HGF因子體外聯(lián)合誘導(dǎo)人骨髓間充質(zhì)干細(xì)胞誘導(dǎo)分化為心肌樣細(xì)胞實驗探討[J];標(biāo)記免疫分析與臨床;2012年03期
3 楊旭芳;何旭;何牮;張麗紅;李玉林;;人脂肪干細(xì)胞向脂肪細(xì)胞的定向分化[J];吉林大學(xué)學(xué)報(醫(yī)學(xué)版);2009年06期
4 王忠;高毅;汪艷;潘明新;;人骨髓間充質(zhì)干細(xì)胞的分離培養(yǎng)與鑒定[J];中華神經(jīng)醫(yī)學(xué)雜志;2006年10期
5 王月田;崔穎;潘欣宇;姚梅;張本;李諶;;重組hCDMP1腺病毒轉(zhuǎn)染骨髓間充質(zhì)干細(xì)胞對其向軟骨分化的影響[J];重慶醫(yī)學(xué);2012年16期
6 王君;付小兵;李存保;;骨髓間充質(zhì)干細(xì)胞的免疫逃逸機(jī)制[J];創(chuàng)傷外科雜志;2006年05期
7 韓雪晶;曲德偉;肖燁;;大鼠骨髓間充質(zhì)干細(xì)胞生物學(xué)特性研究[J];臨床醫(yī)學(xué);2010年12期
8 陳敬煌;徐杰;;骨髓間充質(zhì)干細(xì)胞治療退變椎間盤的研究進(jìn)展[J];福建醫(yī)藥雜志;2012年02期
9 楊新文;張本斯;王勇;;骨髓間充質(zhì)干細(xì)胞分化為心肌樣細(xì)胞的實驗研究[J];解剖學(xué)研究;2008年03期
10 竇慧慧;郭文君;于麗;馬麗;孫麗;;人臍帶間充質(zhì)干細(xì)胞分離培養(yǎng)方法的研究[J];中國組織化學(xué)與細(xì)胞化學(xué)雜志;2010年02期
相關(guān)會議論文 前3條
1 王忠;高毅;汪艷;潘明新;;人骨髓間充質(zhì)干細(xì)胞的分離培養(yǎng)與鑒定[A];廣東省肝臟病學(xué)會2007年年會論文集[C];2007年
2 華松;武浩;張涌;;骨髓間充質(zhì)干細(xì)胞定向分化的研究進(jìn)展[A];全國首屆動物生物技術(shù)學(xué)術(shù)研討會論文集[C];2004年
3 王文明;董雅娟;柏學(xué)進(jìn);村上正夫;劉瑋;張守寶;董懿為;;不同供體核對牛核移植胚胎發(fā)育的影響[A];中國畜牧獸醫(yī)學(xué)會動物繁殖學(xué)分會第十五屆學(xué)術(shù)研討會論文集(上冊)[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 王德國;Cx43基因修飾骨髓間充質(zhì)干細(xì)胞移植對心肌梗死大鼠心功能及電生理影響的實驗研究[D];南京醫(yī)科大學(xué);2010年
2 王江林;基于雙模板協(xié)同共組裝新策略的納米仿生骨材料的可控制備研究[D];華中科技大學(xué);2010年
3 呂成昱;TGF-β3,,TIMP-1聯(lián)合轉(zhuǎn)染兔骨髓間充質(zhì)干細(xì)胞復(fù)合藻酸鹽凝膠修復(fù)兔軟骨缺損[D];山東大學(xué);2010年
4 李曉峰;芒果苷對大鼠骨髓間充質(zhì)干細(xì)胞缺氧損傷的保護(hù)機(jī)制研究[D];廣西醫(yī)科大學(xué);2011年
5 孫斌;可注射溫敏殼聚糖/膠原/甘油磷酸鈉水凝膠應(yīng)用于骨組織工程的初步研究[D];中國人民解放軍軍醫(yī)進(jìn)修學(xué)院;2011年
6 高賀云;GDNF與NT-3雙基因修飾的大鼠骨髓基質(zhì)干細(xì)胞移植治療先天性巨結(jié)腸的初步研究[D];華中科技大學(xué);2011年
7 彭鄂軍;ASCs結(jié)合可降解PLLA/PCL納米纖維支架構(gòu)建功能性尿道的可行性研究[D];華中科技大學(xué);2011年
8 譚琦;加味丹參飲誘導(dǎo)骨髓間充質(zhì)干細(xì)胞分化為心肌樣細(xì)胞的研究[D];湖南中醫(yī)藥大學(xué);2011年
9 王鋒;重癥急性胰腺炎肺毛細(xì)血管滲漏機(jī)制及同種異體骨髓間充質(zhì)干細(xì)胞移植治療效果評價的實驗研究[D];福建醫(yī)科大學(xué);2011年
10 崔維頂;骨—軟骨復(fù)合組織塊修復(fù)軟骨缺損的實驗研究[D];南京醫(yī)科大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 沈文志;骨髓間充質(zhì)干細(xì)胞移植對梗死后大鼠心肌鉀離子通道Ito Kv4.2影響的實驗研究[D];南京醫(yī)科大學(xué);2010年
2 曹明勇;骨髓間充質(zhì)干細(xì)胞移植對心肌梗死大鼠左心室功能和室性心律失常的影響[D];南京醫(yī)科大學(xué);2010年
3 肖豐偉;骨髓間充質(zhì)干細(xì)胞聯(lián)合異體骨治療骨缺損的實驗研究[D];泰山醫(yī)學(xué)院;2010年
4 李琴;誘導(dǎo)骨髓間充質(zhì)干細(xì)胞向心肌樣組織分化的初步研究[D];廣西醫(yī)科大學(xué);2011年
5 陳文超;大鼠腦組織勻漿對其BMSCs向神經(jīng)元樣細(xì)胞分化的影響[D];山西醫(yī)科大學(xué);2011年
6 馬健;體外構(gòu)建一種新型可注射組織工程髓核的初步實驗研究[D];山西醫(yī)科大學(xué);2011年
7 梁靜;骨髓間充質(zhì)干細(xì)胞移植對大鼠實驗性肺氣腫的作用[D];山西醫(yī)科大學(xué);2011年
8 郇松瑋;左旋聚乳酸/殼聚糖/羥基磷灰石復(fù)合仿生支架修復(fù)大段骨缺損的實驗研究[D];暨南大學(xué);2011年
9 任宇;山羊脂肪間充質(zhì)干細(xì)胞的體外分離培養(yǎng)與定向分化[D];內(nèi)蒙古大學(xué);2011年
10 蘇曉華;牛胎肝間充質(zhì)干細(xì)胞的分離培養(yǎng)及生物學(xué)特性研究[D];東北林業(yè)大學(xué);2011年
本文編號:2509004
本文鏈接:http://sikaile.net/xiyixuelunwen/2509004.html