天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

體外聯(lián)合培養(yǎng)體系中HUVECs對(duì)hBMSCs成骨分化的影響及其機(jī)制研究

發(fā)布時(shí)間:2019-07-02 14:24
【摘要】:[研究背景及目的] 不同原因所致各種類(lèi)型骨缺損在臨床上十分常見(jiàn),頜骨缺損的修復(fù)問(wèn)題一直是臨床上難以解決的問(wèn)題。組織工程學(xué)的出現(xiàn)和發(fā)展為骨缺損修復(fù)帶來(lái)了機(jī)遇,其最終目標(biāo)是將功能細(xì)胞與可降解三維生物支架材料在體外聯(lián)合培養(yǎng),構(gòu)建成為有活性的組織或器官,然后植入體內(nèi),替代病損的組織,恢復(fù)其形態(tài)、結(jié)構(gòu)和功能。目前組織工程骨構(gòu)建方法多用單純種子細(xì)胞接種,雖然能夠成骨,但存在組織工程骨血管化緩慢,新骨生長(zhǎng)遲緩等問(wèn)題。 骨髓間充質(zhì)干細(xì)胞(bone marrow Mesenchymal stem cells, BMSCs)具有多向分化的潛能,在適當(dāng)條件下不僅可以分化為脂肪細(xì)胞、骨細(xì)胞、軟骨細(xì)胞、心肌細(xì)胞、神經(jīng)元細(xì)胞、成肌細(xì)胞、肌腱細(xì)胞及星形膠質(zhì)細(xì)胞等。目前關(guān)于誘導(dǎo)單純BMSCs向成骨細(xì)胞分化的研究取得了較大的進(jìn)展,然而誘導(dǎo)單純BMSCs向成骨細(xì)胞分化存在成骨周期長(zhǎng)、成骨效率低、細(xì)胞易老化等缺點(diǎn)。 近年來(lái),研究人員發(fā)現(xiàn)內(nèi)皮細(xì)胞可以分泌骨形態(tài)發(fā)生蛋白(Bone morphogenetic protein, BMP),促進(jìn)成骨分化的同時(shí)刺激成骨細(xì)胞及其前體細(xì)胞分泌血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF),而VEGF在血管發(fā)生和形成過(guò)程中發(fā)揮著重要作用,可以促進(jìn)內(nèi)皮細(xì)胞增殖。然而目前血管內(nèi)皮細(xì)胞對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化作用的具體機(jī)制還不清楚,尚缺乏從基因水平驗(yàn)證血管內(nèi)皮細(xì)胞對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化的作用。 為此,本課題著重探討人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells, HUVECs)在聯(lián)合培養(yǎng)體系中對(duì)人骨髓間充質(zhì)干細(xì)胞(human bone marrow Mesenchymal stem cells, hBMSCs)的形態(tài)、生長(zhǎng)、細(xì)胞分化及其Bmi-1基因和Runx2基因表達(dá)的影響,從基因水平驗(yàn)證血管內(nèi)皮細(xì)胞對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化的作用。為臍靜脈內(nèi)皮細(xì)胞和骨髓間充質(zhì)干細(xì)胞聯(lián)合培養(yǎng)作為骨組織工程的種子細(xì)胞提供理論基礎(chǔ)。 [方法] (1)抽取志愿者骨髓液,使用密度梯度離心法分離骨髓單個(gè)核細(xì)胞,并借助MSCs黏附于塑料瓶底這一特性進(jìn)行純化,相差顯微鏡觀察形態(tài)變化。將MSCs傳代擴(kuò)增培養(yǎng)至第三代,流式細(xì)胞儀檢測(cè)CD34.CD29.CD44表面抗原表達(dá),鑒定MSCs; (2)將訂購(gòu)的HUVECs用ECM+10%新生胎牛血清擴(kuò)增至第三代后與第三代HUVECs按1:1比例建立以DMEM+10%胎牛血清為培養(yǎng)基的聯(lián)合培養(yǎng)體系。以單獨(dú)培養(yǎng)的hBMSCs組及hUVECs組作為陰性對(duì)照組,分別于第4、6、8、10天相差顯微鏡觀察形態(tài)變化,用計(jì)數(shù)板計(jì)數(shù)各組hBMSCs數(shù)量; (3)分別于第4、6、8、10天每組每個(gè)時(shí)間點(diǎn)取6孔檢測(cè)三組培養(yǎng)體系中堿性磷酸酶(Alkaline phosphatase,ALP)及骨鈣素(Osteocalin,OC)含量。用SPSS17.0軟件對(duì)各項(xiàng)檢測(cè)值進(jìn)行統(tǒng)計(jì)學(xué)分析; (4)采用實(shí)時(shí)熒光定量PCR(fluorescence quantitative PCR,FQ-PCR)檢測(cè)第4、6、8、10天單獨(dú)培養(yǎng)的hBMSCs組及聯(lián)合培養(yǎng)組中hBMSCs的Bmi-1和Runx2基因表達(dá)的情況,每組每個(gè)時(shí)間點(diǎn)取6孔。用SPSS17.0軟件對(duì)各項(xiàng)檢測(cè)值進(jìn)行統(tǒng)計(jì)學(xué)分析。 [結(jié)果] (1)采用Ficoll液密度梯度離心法分離、提純hBMSCs可達(dá)到較高的純度。用流式細(xì)胞儀對(duì)第3代hMSCs進(jìn)行細(xì)胞表型分析鑒定,CD34低表達(dá),CD29.CD44高表達(dá); (2)新生胎牛血清分離培養(yǎng)的人骨髓間充質(zhì)干細(xì)胞成細(xì)長(zhǎng)梭形,細(xì)胞較細(xì)小,原代培養(yǎng)4至5天就可見(jiàn)成團(tuán)生長(zhǎng)的細(xì)胞;第三代骨髓間充質(zhì)干細(xì)胞形態(tài)單一,成梭形,呈旋渦狀分布,沒(méi)有細(xì)胞重疊現(xiàn)象。hBMSCs在4-6天呈對(duì)數(shù)生長(zhǎng),8-10天后生長(zhǎng)進(jìn)入平臺(tái)期。HUVECs成單層生長(zhǎng),形態(tài)成多角形、鵝卵石狀鑲嵌排列,邊界清楚,胞漿豐富,胞核呈圓形或橢圓形,偶見(jiàn)雙核,第5d融合成片,第一代至第四代生長(zhǎng)速度較快,2-3天即可傳代; (3)各組堿性磷酸酶檢測(cè)量隨時(shí)間延長(zhǎng)先增高后降低,各時(shí)間聯(lián)合培養(yǎng)組ALP較高,8天時(shí)聯(lián)合培養(yǎng)組堿性磷酸酶最高;骨髓間充質(zhì)干細(xì)胞組和臍靜脈內(nèi)皮細(xì)胞組ALP基本沒(méi)有變化;聯(lián)合培養(yǎng)組和其它各組之間兩兩比較均有顯著統(tǒng)計(jì)學(xué)意義(P0.01);各組骨鈣素檢測(cè)量隨時(shí)間延長(zhǎng)先增高后降低;8天時(shí)聯(lián)合培養(yǎng)組骨鈣素最高;聯(lián)合培養(yǎng)組和其它各組之間兩兩比較均有顯著統(tǒng)計(jì)學(xué)意義(P0.01); (4)聯(lián)合培養(yǎng)組Bmi-1、Runx2基因檢測(cè)量隨時(shí)間延長(zhǎng)逐漸增高,各時(shí)間聯(lián)合培養(yǎng)組Runx2基因表達(dá)較高;骨髓間充質(zhì)干細(xì)胞組Bmi-1基因隨時(shí)間延長(zhǎng)略有增高,Runx2基因表達(dá)基本沒(méi)有變化;8th天時(shí)聯(lián)合培養(yǎng)組Bmi-1、Runx2基因檢測(cè)量最高;聯(lián)合培養(yǎng)組和骨髓間充質(zhì)干細(xì)胞組之間比較有顯著統(tǒng)計(jì)學(xué)意義(P0.01)。 [結(jié)論] (1)采用Ficoll液密度梯度離心法分離、提純的hBMSCs,經(jīng)流式細(xì)胞儀鑒定為較高純度的細(xì)胞; (2)骨髓間充質(zhì)干細(xì)胞與臍靜脈內(nèi)皮細(xì)胞聯(lián)合培養(yǎng)相容性良好,臍靜脈內(nèi)皮細(xì)胞對(duì)體外聯(lián)合培養(yǎng)體系中骨髓間充質(zhì)干細(xì)胞具有促進(jìn)增殖的作用; (3)在體外聯(lián)合培養(yǎng)體系中,臍靜脈內(nèi)皮細(xì)胞能促進(jìn)骨髓間充質(zhì)干細(xì)胞Bmi-1及Runx2基因的表達(dá),誘導(dǎo)其向成骨細(xì)胞方向分化。
[Abstract]:[Background and purpose of the study] The various types of bone defects due to different causes are very common in the clinic, and the problem of the repair of the defect of the jaw is always difficult to solve. Problems. The emergence and development of tissue engineering brings an opportunity for the repair of bone defects. The ultimate goal is to combine functional cells and degradable three-dimensional biological scaffold materials in vitro, to construct an active tissue or organ, Form, structure and The present tissue engineering bone construction method is multi-purpose simple seed cell inoculation, although it can be formed, the tissue engineering bone vascularization is slow, the growth of the new bone is slow, and the like. The bone marrow mesenchymal stem cells (BMSCs) have the potential of multi-directional differentiation, and can not only be differentiated into adipocytes, osteocytes, chondrocytes, cardiac muscle cells, neuron cells, myoblasts, tendon cells and star-like cells under appropriate conditions. At present, it has made great progress in the study of inducing the differentiation of only BMSCs to the osteoblast, but the induction of the differentiation of the BMSCs to the osteoblast is long, the osteogenic efficiency is low, and the cells are easy to use. In recent years, the researchers have found that endothelial cells can secrete bone morphogenetic protein (BMP), promote osteogenic differentiation, and stimulate the secretion of vascular endothelial growth factor (VEGF) in the osteoblast and its precursor cells. or, VEGF), and VEGF plays an important role in angiogenesis and formation, and can To promote the proliferation of the endothelial cells, the specific mechanism of the current vascular endothelial cells to the osteogenic differentiation of the bone marrow-derived mesenchymal stem cells is not clear. To study the effects of human umbilical vein endothelial cells (HUVECs) on human bone marrow mesenchymal stem cells (hBMSCs), the morphology, growth, cell differentiation and Bmi-1 gene and R of human bone marrow-derived mesenchymal stem cells (hBMSCs) in human umbilical vein endothelial cells (HUVECs) were discussed in this paper. The effect of unx 2 gene expression on the expression of bone marrow from vascular endothelial cells from the gene level The role of the osteogenic differentiation of the mesenchymal stem cells is the combination of the umbilical vein endothelial cells and the bone marrow mesenchymal stem cells as bone tissue engineering. fine seed The cell provides a theoretical basis.[Method] (1) The bone marrow liquid of the volunteers is extracted, and the bone marrow mononuclear cells are separated by using a density gradient centrifugation method, and the bone marrow mononuclear cells are adhered to the bottom of the plastic bottle by means of MSCs. The culture of MSCs was cultured to the third generation, and the CD34. CD29 was detected by flow cytometry. The expression of the surface antigen of CD44 was identified and the MSCs were identified; (2) the newly-ordered HUVECs was expanded to the third generation with the ECM + 10% of the new fetal calf serum, and the second generation HUVECs was set up in a 1:1 ratio with the third generation HUVECs for DME The combined culture system of M + 10% fetal calf serum was used as the negative control group for the cultured hBMSCs group and the hUVECs group. the number of hBMSCs in each group is counted by using a counting plate, and (3) the number of each group of hBMSCs is detected by a counting plate; and (3) six holes are taken at each time point of each group in groups 4,6,8 and 10 respectively to detect the alkaline in three groups of culture systems Phosphatase, AL P) and the content of Osteocin (OC). (4) Bmi of hBMSCs and hBMSCs in group 4,6,8 and 10 were detected by real-time fluorescence quantitative PCR (FQ-PCR). -1 and Runx2 gene expression,6 for each group of time points per group Hole. S The PSS17.0 software performs a statistical analysis of the detection values.[Results] (1) Use F The purification of hBMSCs can achieve higher purity by the method of density gradient centrifugation, and the third generation hMSCs were determined by flow cytometry. The analysis and identification of the cell phenotype, the low expression of CD34, the high expression of CD29. CD44, and (2) the isolation and culture of the new fetal bovine serum. the mesenchymal stem cells are in an elongated shuttle shape, the cells are small, and the cells growing in a cluster can be seen in the primary culture for 4 to 5 days; The third generation of the bone marrow-derived mesenchymal stem cells has a single form, a spindle shape, a vortex-like distribution, no cells, the hBMSCs are logarithmic growth on 4-6 days and grow into the platform stage after 8-10 days; the HUVECs are single-layer growth, the shape is polygonal, the cobblestone is embedded and arranged, the boundary is clear, the cytoplasm is rich, the nucleus is circular or elliptical, 2-3 days after the first-generation to fourth-generation growth, and 2-3 days of passage; (3) the amount of alkaline phosphatase in each group was decreased with the increase of time, the ALP of the combined culture group was higher, and the combination of 8 days was combined. The alkaline phosphatase of the culture group was the highest, and the ALP of the bone marrow mesenchymal stem cell group and the umbilical vein endothelial cell group did not change basically, and there was a significant difference between the combined culture group and the other groups (P0 .01). The amount of bone-bone detection in each group was decreased with the increase of time, and the combined culture group was cultured on 8 days. There was a significant difference between the two groups in the combined culture group and the other groups (P0.01), and (4) the combined culture group Bmi- 1. The amount of the Runx2 gene was increased with the time, and the expression of the Runx2 gene in the combined culture group was high; the Bmi-1 gene of the bone marrow-derived mesenchymal stem cell group increased slightly with the time, and the expression of the Runx2 gene was basically unchanged; the Bmi-1 and Runx2 groups in the combined culture group at the 8th day due to the amount of detection There was a significant difference between the combination culture group and the bone marrow mesenchymal stem cell group (P0.01).[Conclusion] (Conclusion] ( 1) Separation and purification of hBMSC by Ficoll density gradient centrifugation (2) bone marrow mesenchymal stem cells and umbilicus; the combined culture of the vein endothelial cells is good, the umbilical vein endothelial cells have the effect of promoting the proliferation of the bone marrow mesenchymal stem cells in the in vitro combined culture system, and (3) in vitro combination
【學(xué)位授予單位】:昆明醫(yī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:R329

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王榮;劉華松;張敏;楊慧;孫正;;骨髓基質(zhì)細(xì)胞及誘導(dǎo)后成骨細(xì)胞在鈦合金表面粘附率的研究[J];北京口腔醫(yī)學(xué);2006年02期

2 銀廣悅;陳素萍;王文紅;張繼領(lǐng);張龍;張明;;5-氮胞苷與HGF因子體外聯(lián)合誘導(dǎo)人骨髓間充質(zhì)干細(xì)胞誘導(dǎo)分化為心肌樣細(xì)胞實(shí)驗(yàn)探討[J];標(biāo)記免疫分析與臨床;2012年03期

3 楊旭芳;何旭;何牮;張麗紅;李玉林;;人脂肪干細(xì)胞向脂肪細(xì)胞的定向分化[J];吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2009年06期

4 王忠;高毅;汪艷;潘明新;;人骨髓間充質(zhì)干細(xì)胞的分離培養(yǎng)與鑒定[J];中華神經(jīng)醫(yī)學(xué)雜志;2006年10期

5 王月田;崔穎;潘欣宇;姚梅;張本;李諶;;重組hCDMP1腺病毒轉(zhuǎn)染骨髓間充質(zhì)干細(xì)胞對(duì)其向軟骨分化的影響[J];重慶醫(yī)學(xué);2012年16期

6 王君;付小兵;李存保;;骨髓間充質(zhì)干細(xì)胞的免疫逃逸機(jī)制[J];創(chuàng)傷外科雜志;2006年05期

7 韓雪晶;曲德偉;肖燁;;大鼠骨髓間充質(zhì)干細(xì)胞生物學(xué)特性研究[J];臨床醫(yī)學(xué);2010年12期

8 陳敬煌;徐杰;;骨髓間充質(zhì)干細(xì)胞治療退變椎間盤(pán)的研究進(jìn)展[J];福建醫(yī)藥雜志;2012年02期

9 楊新文;張本斯;王勇;;骨髓間充質(zhì)干細(xì)胞分化為心肌樣細(xì)胞的實(shí)驗(yàn)研究[J];解剖學(xué)研究;2008年03期

10 竇慧慧;郭文君;于麗;馬麗;孫麗;;人臍帶間充質(zhì)干細(xì)胞分離培養(yǎng)方法的研究[J];中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志;2010年02期

相關(guān)會(huì)議論文 前3條

1 王忠;高毅;汪艷;潘明新;;人骨髓間充質(zhì)干細(xì)胞的分離培養(yǎng)與鑒定[A];廣東省肝臟病學(xué)會(huì)2007年年會(huì)論文集[C];2007年

2 華松;武浩;張涌;;骨髓間充質(zhì)干細(xì)胞定向分化的研究進(jìn)展[A];全國(guó)首屆動(dòng)物生物技術(shù)學(xué)術(shù)研討會(huì)論文集[C];2004年

3 王文明;董雅娟;柏學(xué)進(jìn);村上正夫;劉瑋;張守寶;董懿為;;不同供體核對(duì)牛核移植胚胎發(fā)育的影響[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)動(dòng)物繁殖學(xué)分會(huì)第十五屆學(xué)術(shù)研討會(huì)論文集(上冊(cè))[C];2010年

相關(guān)博士學(xué)位論文 前10條

1 王德國(guó);Cx43基因修飾骨髓間充質(zhì)干細(xì)胞移植對(duì)心肌梗死大鼠心功能及電生理影響的實(shí)驗(yàn)研究[D];南京醫(yī)科大學(xué);2010年

2 王江林;基于雙模板協(xié)同共組裝新策略的納米仿生骨材料的可控制備研究[D];華中科技大學(xué);2010年

3 呂成昱;TGF-β3,,TIMP-1聯(lián)合轉(zhuǎn)染兔骨髓間充質(zhì)干細(xì)胞復(fù)合藻酸鹽凝膠修復(fù)兔軟骨缺損[D];山東大學(xué);2010年

4 李曉峰;芒果苷對(duì)大鼠骨髓間充質(zhì)干細(xì)胞缺氧損傷的保護(hù)機(jī)制研究[D];廣西醫(yī)科大學(xué);2011年

5 孫斌;可注射溫敏殼聚糖/膠原/甘油磷酸鈉水凝膠應(yīng)用于骨組織工程的初步研究[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2011年

6 高賀云;GDNF與NT-3雙基因修飾的大鼠骨髓基質(zhì)干細(xì)胞移植治療先天性巨結(jié)腸的初步研究[D];華中科技大學(xué);2011年

7 彭鄂軍;ASCs結(jié)合可降解PLLA/PCL納米纖維支架構(gòu)建功能性尿道的可行性研究[D];華中科技大學(xué);2011年

8 譚琦;加味丹參飲誘導(dǎo)骨髓間充質(zhì)干細(xì)胞分化為心肌樣細(xì)胞的研究[D];湖南中醫(yī)藥大學(xué);2011年

9 王鋒;重癥急性胰腺炎肺毛細(xì)血管滲漏機(jī)制及同種異體骨髓間充質(zhì)干細(xì)胞移植治療效果評(píng)價(jià)的實(shí)驗(yàn)研究[D];福建醫(yī)科大學(xué);2011年

10 崔維頂;骨—軟骨復(fù)合組織塊修復(fù)軟骨缺損的實(shí)驗(yàn)研究[D];南京醫(yī)科大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 沈文志;骨髓間充質(zhì)干細(xì)胞移植對(duì)梗死后大鼠心肌鉀離子通道Ito Kv4.2影響的實(shí)驗(yàn)研究[D];南京醫(yī)科大學(xué);2010年

2 曹明勇;骨髓間充質(zhì)干細(xì)胞移植對(duì)心肌梗死大鼠左心室功能和室性心律失常的影響[D];南京醫(yī)科大學(xué);2010年

3 肖豐偉;骨髓間充質(zhì)干細(xì)胞聯(lián)合異體骨治療骨缺損的實(shí)驗(yàn)研究[D];泰山醫(yī)學(xué)院;2010年

4 李琴;誘導(dǎo)骨髓間充質(zhì)干細(xì)胞向心肌樣組織分化的初步研究[D];廣西醫(yī)科大學(xué);2011年

5 陳文超;大鼠腦組織勻漿對(duì)其BMSCs向神經(jīng)元樣細(xì)胞分化的影響[D];山西醫(yī)科大學(xué);2011年

6 馬健;體外構(gòu)建一種新型可注射組織工程髓核的初步實(shí)驗(yàn)研究[D];山西醫(yī)科大學(xué);2011年

7 梁靜;骨髓間充質(zhì)干細(xì)胞移植對(duì)大鼠實(shí)驗(yàn)性肺氣腫的作用[D];山西醫(yī)科大學(xué);2011年

8 郇松瑋;左旋聚乳酸/殼聚糖/羥基磷灰石復(fù)合仿生支架修復(fù)大段骨缺損的實(shí)驗(yàn)研究[D];暨南大學(xué);2011年

9 任宇;山羊脂肪間充質(zhì)干細(xì)胞的體外分離培養(yǎng)與定向分化[D];內(nèi)蒙古大學(xué);2011年

10 蘇曉華;牛胎肝間充質(zhì)干細(xì)胞的分離培養(yǎng)及生物學(xué)特性研究[D];東北林業(yè)大學(xué);2011年



本文編號(hào):2509004

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/xiyixuelunwen/2509004.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶059d4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com