肺炎鏈球菌DnaJ對細菌毒力的影響及其在誘導(dǎo)宿主天然免疫反應(yīng)中的作用
[Abstract]:Streptococcus pneumoniae (S.pn) is a common gram-positive pathogenic bacteria, which causes pneumonia, meningitis and septicemia in the world with high morbidity and mortality. In recent 20 years, many proteins of S.pn have been found to be inflammatory medials or directly damage the host tissues and encode these proteins. The virulence of S.pn decreased significantly after gene mutation, so the virulence protein of S.pn played an important role in the pathogenesis of Streptococcus pneumoniae infection.
When bacteria enter the host environment, they inevitably face changes in survival conditions. They adjust gene expression to adapt to the selection pressure of the environment. The heat shock protein (HeatShock Protein, HSP) of bacteria is a group of stress induced proteins related to the bacteria itself. The expression of HSP is often a potential virulence factor of bacteria. Therefore, a comprehensive understanding of the effect of Streptococcus pneumoniae HSP on its own virulence and its interaction with the host immune cells will contribute to the development of a new therapeutic agent against pneumococcal infection.
DnaJ/Hsp40 protein is a highly conserved and widely existing heat shock protein. As a co molecular chaperone of DnaK, the DnaJ protein that activates DnaK's ATPase activity.S.pn is a surface protein. Studies have shown that the protein has the potential of the vaccine. Peritoneal or mucosal inoculation causes the host to produce acquired immunity against multiple serotype S.pn infections. However, it is not clear whether DnaJ proteins are involved in bacterial pathogenesis and the interaction between DnaJ proteins and host innate immune cells.
In this study, the effects of dnaJ defects on the virulence of Streptococcus pneumoniae and the role of DnaJ in inducing the natural immune response of the host - the secretion of pro-inflammatory factors, the recognition of the pattern recognition receptor (PRR) to the DnaJ protein and the activation of the signal pathway were observed in two aspects, including the following three parts:
1, the dnaJ gene deletion mutant of S.pn was constructed to observe the growth of temperature stress in vitro, providing experimental strains and technical platform for subsequent study of the role of DnaJ in the interaction of bacteria and host.
Using the long arm homologous polymerase chain reaction (LFH-PCR) method, the erythromycin resistance gene (ERM) was prepared in the middle, and both sides were dnaJ genes, the downstream homologous sequences were linked, the Streptococcus pneumoniae D39 or R6 bacteria were transformed, and the defective strains were screened on the erythromycin containing blood plate and used to identify the defective strains by PCR and sequencing. The results showed the dnaJ base of the defective strains. Because of the substitution of ERM gene completely, the morphology of Gram stain was not changed, but its colony was obviously smaller, and the growth curve in vitro was roughly the same as that of wild bacteria at 30 and 37 C, but the growth was obviously inhibited at 20 and 40 C, almost unable to grow.
2, the influence of dnaJ deficiency on the toxicity of pneumococcus pneumoniae was observed from two aspects in vivo and in vitro.
The survival of the mice infected with wild bacteria or defective bacteria was observed directly after the intraperitoneal attack. The nasal infection S.pn established the mice pneumonia model, counted the bacterial load of the susceptible tissue, and determined the effect of dnaJ defects on the self colonization ability of the bacteria. S.pn infected the lung epithelial cells of mice, and compared the adhesion and invasion ability of the wild and defective strains. Differences. The toxicity test showed that the mice in the dnaJ deficient bacteria group could tolerate the lethal dose of S.pn and the long-term survival. The bacterial load in the nasopharynx and lungs of the defective bacteria group was significantly lower than that of the wild bacteria group, and the defective bacteria in the blood were cleared quickly, and the dnaJ defect made the adhesion and invasion ability of MLE12 cells weakened significantly. After pretreatment with DnaJ antiserum, the adhesion ability of wild bacteria to MLE12 cells decreased significantly.
3, the changes in the natural immune response of the host or immune cells to the bacteria after the S.pn dnaJ gene defect were identified, and then the host identification and the downstream signaling pathway were screened at the molecular level by the host to identify the DnaJ induced innate immunity.
The pneumonia model of S.pn in mice was established. The inflammatory reaction was observed in the infected lung tissue section and the expression of proinflammatory factors was detected by quantitative PCR and ELISA. The macrophage macrophage RAW264.7 infected S.pn, compared the phagocytic ability of the cells to the wild and defective bacteria and the secretion level of the inflammatory factors, and the prokaryotic expression and purified DnaJ full length protein stimulated RAW264.. 7, detection of the level of proinflammatory factors, quantitative PCR screening and identification of DnaJ protein TLRs, and using anti TLRs monoclonal antibody test, protein kinase inhibitor screening DnaJ protein induced proinflammatory factor related signal pathway, Western blot to verify. In vivo experiment showed that S.pn dnaJ deficiency after the infection of mice lung inflammation reaction intensity decreased, proinflammatory factor score The peak time was reduced and the peak time was delayed. In vitro, it was found that the phagocytosis of RAW264.7 to S.pn increased after dnaJ defect, and the secretion of proinflammatory cytokines secreted.DnaJ protein to activate PI3K, JNK signaling pathway and stimulate the secretion of pro-inflammatory factor IL-6, which did not depend on TLR2 and TLR4..
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R378
【相似文獻】
相關(guān)期刊論文 前10條
1 孫長貴,陳漢美;肺炎鏈球菌及其對抗生素耐藥性研究進展[J];臨床檢驗雜志;1999年06期
2 張麗娟;袁曾麟;杜宗利;肖憶梅;丁紹卿;;中國肺炎鏈球菌標準菌株的篩選和建立[J];微生物學報;1990年05期
3 黃彬,陳茶;肺炎鏈球菌蛋白質(zhì)類的毒力因子[J];國外醫(yī)學.臨床生物化學與檢驗學分冊;1999年02期
4 楊帆;肺炎鏈球菌耐藥性研究進展[J];國外醫(yī)學.內(nèi)科學分冊;2001年07期
5 華春珍,尚世強,李建平,徐珊,朱芹;黏液型肺炎鏈球菌的表型和遺傳學特征[J];中華微生物學和免疫學雜志;2004年12期
6 張雪梅,尹一兵,朱旦,陳保德,羅進勇,鄧一平,劉明芳,陳淑慧,孟江萍,徐邦牢,康格非;肺炎鏈球菌的轉(zhuǎn)化缺陷導(dǎo)致細菌毒力減弱[J];中華微生物學和免疫學雜志;2005年02期
7 李明;胡福泉;唐家琪;;肺炎鏈球菌二元信號轉(zhuǎn)導(dǎo)系統(tǒng)研究進展[J];微生物學免疫學進展;2008年04期
8 王劍虹,喬瑞潔,王欣茹,沈榮,趙萍;肺炎鏈球菌培養(yǎng)及其莢膜多糖的制備[J];甘肅科學學報;2004年03期
9 鄒莎莎;程安春;汪銘書;;肺炎鏈球菌毒力因子的研究進展[J];中國人獸共患病學報;2009年04期
10 齋藤學;朱梅芬;;仙臺病毒感染能增強豚鼠肺炎鏈球茵的增殖和傳播[J];實驗動物與比較醫(yī)學;1988年04期
相關(guān)會議論文 前10條
1 崔瑾;董杰;姜慧;周愛娥;董珊珊;何於娟;張雪梅;尹一兵;王虹;;肺炎鏈球菌dnaJ基因缺陷菌株的構(gòu)建及毒力變化的初步研究[A];中華醫(yī)學會第九次全國檢驗醫(yī)學學術(shù)會議暨中國醫(yī)院協(xié)會臨床檢驗管理專業(yè)委員會第六屆全國臨床檢驗實驗室管理學術(shù)會議論文匯編[C];2011年
2 張媛媛;王一雯;孫勝利;賀建平;;耐青霉素性肺炎鏈球菌致急性化膿性腦膜炎1例[A];第九屆西北五。▍^(qū))檢驗醫(yī)學學術(shù)會議論文匯編[C];2005年
3 徐麗慧;王賢軍;王敏敏;董曉勤;;肺炎鏈球菌大環(huán)內(nèi)酯藥物耐藥性及耐藥基因erm、mef的檢測[A];2009年浙江省檢驗醫(yī)學學術(shù)年會論文匯編[C];2009年
4 胡曉彥;;兒童感染肺炎鏈球菌耐藥性及基因分型[A];中華醫(yī)學會第八次全國檢驗醫(yī)學學術(shù)會議暨中華醫(yī)學會檢驗分會成立30周年慶典大會資料匯編[C];2009年
5 胡惠麗;胡翼云;何樂健;沈敘莊;高薇;楊永弘;;肺炎鏈球菌在兒童社區(qū)獲得性肺炎死亡病例中致病地位的研究[A];中華醫(yī)學會第十四次全國兒科學術(shù)會議論文匯編[C];2006年
6 張瑾;胡大康;俞蓮花;孫靈芬;陶柳萍;吳蘇蘇;李淑芬;楊錦紅;李向陽;;肺炎鏈球菌對THP-1細胞分泌ICAM-1影響的研究[A];2011年浙江省檢驗醫(yī)學學術(shù)年會論文匯編[C];2011年
7 李耘;富田芳治;肖永紅;劉健;薛峰;池康嘉;;erm(B)和mef(E)介導(dǎo)紅霉素耐藥肺炎鏈球菌分子特性研究[A];2008第十一次全國臨床藥理學學術(shù)大會論文集[C];2008年
8 周忠華;劉華;喻華;;69株肺炎鏈球菌的體外抗菌藥物活性研究[A];中華醫(yī)院管理學會第十一屆全國醫(yī)院感染管理學術(shù)年會論文匯編[C];2004年
9 高薇;姚開虎;俞桑潔;楊永弘;;2000~2005年分離自北京兒童鼻咽部的19群肺炎鏈球菌的耐藥性變化[A];中華醫(yī)學會第五次全國兒科中青年學術(shù)交流大會論文匯編(上冊)[C];2008年
10 施毅;;社區(qū)獲得性肺炎的診治進展[A];華東地區(qū)第6屆中青年呼吸醫(yī)師論壇暨浙江省第29屆呼吸疾病學術(shù)年會論文匯編[C];2007年
相關(guān)重要報紙文章 前10條
1 記者 王丹;兒童肺炎鏈球菌性疾病防治指南發(fā)布[N];健康報;2010年
2 本報記者 李穎;肺炎鏈球菌遇流感病毒危害更大[N];科技日報;2010年
3 王黎;WHO呼吁將肺炎鏈球菌結(jié)合疫苗納入兒童計劃免疫[N];醫(yī)藥經(jīng)濟報;2007年
4 記者 鄭靈巧;流感繼發(fā)肺炎鏈球菌疾病危害大[N];健康報;2010年
5 記者 毛黎;遨游天宇的特殊客[N];科技日報;2007年
6 記者 吳偉農(nóng);美科學家繪制出肺炎鏈球菌基因圖譜[N];新華每日電訊;2001年
7 北京兒童醫(yī)院微生物免疫室 姚開虎;接種哪種肺炎鏈球菌疫苗好[N];健康報;2007年
8 陳樂蓉;肺炎[N];家庭醫(yī)生報;2008年
9 萬同己;肺炎鏈球菌耐紅霉素原因何在[N];中國醫(yī)藥報;2004年
10 姚文;接種哪種肺炎疫苗好[N];醫(yī)藥養(yǎng)生保健報;2007年
相關(guān)博士學位論文 前10條
1 張巧;肺炎鏈球菌毒力蛋白基因工程疫苗的實驗研究[D];第三軍醫(yī)大學;2010年
2 陳蓉;兒童呼吸道感染病原學及肺炎鏈球菌耐藥的分子流行病學研究[D];復(fù)旦大學;2010年
3 張雪梅;肺炎鏈球菌轉(zhuǎn)化對細菌毒力和耐藥性影響的研究[D];重慶醫(yī)科大學;2003年
4 馬千里;肺炎鏈球菌毒力蛋白基因工程疫苗優(yōu)勢抗原篩選[D];第三軍醫(yī)大學;2009年
5 牛司強;一種肺炎鏈球菌溶菌酶樣假想蛋白質(zhì)SP0987的結(jié)構(gòu)和功能研究[D];重慶醫(yī)科大學;2011年
6 張濤;兒童肺炎流行特征、病原體診斷方法評價和肺炎鏈球菌多重PCR分型方法研究[D];復(fù)旦大學;2010年
7 商濤;Leydig細胞中Toll樣受體(TLR)介導(dǎo)的睪丸天然免疫反應(yīng)[D];北京協(xié)和醫(yī)學院;2011年
8 王婭婭;β-Arrestin調(diào)控Toll樣受體—白介素1受體的信號轉(zhuǎn)導(dǎo)[D];中國科學院研究生院(上海生命科學研究院);2006年
9 王革非;流感病毒誘導(dǎo)神經(jīng)膠質(zhì)細胞的病理變化及天然免疫反應(yīng)[D];汕頭大學;2008年
10 劉心潔;基質(zhì)金屬蛋白酶及其抑制劑在幼鼠細菌性腦膜炎中的試驗研究[D];山東大學;2004年
相關(guān)碩士學位論文 前10條
1 崔亞利;鼻腔、腹腔免疫DnaJ蛋白對小鼠肺炎鏈球菌感染的保護效果及機制的研究[D];重慶醫(yī)科大學;2010年
2 姚成;肺炎鏈球菌耐藥性、分子流行病學和耐藥機制[D];重慶醫(yī)科大學;2002年
3 陳保德;肺炎鏈球菌自殺性熒光報告質(zhì)粒的構(gòu)建與評價[D];重慶醫(yī)科大學;2003年
4 鄒莎莎;獼猴源肺炎鏈球菌分離和鑒定及FQ-PCR建立和在闡明其侵染機制研究中的應(yīng)用[D];四川農(nóng)業(yè)大學;2010年
5 曾憲飛;肺炎鏈球菌LicC蛋白在致病過程中作用的研究[D];第四軍醫(yī)大學;2010年
6 吳凱峰;三種肺炎鏈球菌表面蛋白聯(lián)合誘導(dǎo)的特異性IgG抗體介導(dǎo)的免疫保護[D];重慶醫(yī)科大學;2010年
7 楊曉亮;肺炎鏈球菌假想蛋白SPD0873功能分析及對細菌毒力影響的機制研究[D];重慶醫(yī)科大學;2010年
8 羅進勇;基因comE、comX、cinA、dnaK在肺炎鏈球菌感受態(tài)形成中作用的研究[D];重慶醫(yī)科大學;2002年
9 薛新娜;肺炎鏈球菌表面蛋白A基因和溶血素基因的融合及高效表達[D];廣州中醫(yī)藥大學;2010年
10 周華;肺炎鏈球菌DHBPs的結(jié)構(gòu)和功能研究[D];重慶醫(yī)科大學;2011年
本文編號:2172279
本文鏈接:http://sikaile.net/xiyixuelunwen/2172279.html