大鼠喉運(yùn)動(dòng)神經(jīng)元的呼吸功能和非呼吸功能的中樞調(diào)控
[Abstract]:Objective: the laryngeal chemical reflex is induced by the larynx induced by the liquid inhalation of the larynx. The electrical stimulation of the superior laryngeal nerve can induce apnea reflex, inhibit the activity of the central nervous system and stimulate the discharge activity of the exhalation laryngeal motor neurons. However, the mechanism of the electrical stimulation of the superior laryngeal nerve can induce the respiratory suspension reflex to produce apnea. The aim is to study the neural regulation pathway of apnea reflex induced by stimulation of superior laryngeal nerve.
Methods: 20Hz (0.2ms) induced apnea reflex, and then microinjection of GABAA receptor agonist isoguvacine (10 mM, 20-40 NL) to the ipsilateral paratagal complex and contralateral nucleus of solitary tract. After 60mmin injection, only microinjection of isoguvacine to the contralateral nucleus of the solitary tract was used to monitor the recurrent laryngeal nerve activity. After two minutes of microinjection of isoguvacine, the electrical signals of the recurrent laryngeal nerve and phrenic nerve were recorded to evaluate the effect of isoguvacine.
Results: the apnea reflex was induced by the stimulation of the superior laryngeal nerve (20 Hz), and the phrenic nerve discharge decreased to the baseline of 12 isoguvacine to the same side of the pachtchin complex. The apnea reflex was markedly weakened, and then isoguvacine was injected into the contralateral nucleus of the solitary tract, and the apnea reflex induced by the upper laryngeal nerve stimulation was completely cancelled. However, the cluster discharge activity of the exhaled laryngeal motor neurons induced by the stimulation of the superior laryngeal nerve was not affected. Only microinjection of isoguvacine to the contralateral nucleus of the solitary tract had little effect on the apnea reflex. After the package Qinge complex and the contralateral nucleus of the solitary tract, the apnea was almost completely cancelled, but exhaled larynx movement The results suggest that the neural projections from the nucleus of the nucleus to the bilateral nucleus of the nucleus and the Bao Qin lattice may mediate the cluster discharge and apnea of the exhaled laryngeal motoneurons, respectively.
Objective: to demonstrate that many motor neurons and respiratory neurons accept the transfer of tyrosine hydroxylase - like immuno - positive transmitters, but it is not clear whether the projection of the laryngeal motoneurons located in the nucleus of the nucleus of the nucleus is not clear. The purpose of this experiment is 1) whether the tyrosine hydroxylase immunoreactive nerve terminal and exhalation larynx are used. If the results are positive, 2) Study the source of catecholamine neurotransmitters received by rat laryngeal motor neurons.
Methods: in this experiment, we mainly study whether the expiratory laryngeal neurons in SD rats receive the transmission of tyrosine hydroxylase immunoreactive neurotransmitters by combining the intracellular labeling and immunohistochemistry. The identification of exhaled laryngeal motoneurons is based on the characteristics of its discharge activity in the post inhalation phase of the larynx and on the recurrent laryngeal nerve spines. A further neural tracer experiment, through the injection of cholera toxin B subunit to the caudal nucleus. Reverse labeled neurons and tyrosine hydroxylase immunoreactive structures are displayed by a fluorescence double labeling method.
Results: the close contact structure of tyrosine hydroxylase immunoreactive nerve terminals was found on all exhaled laryngeal motoneurons, with the average number of close contact structures about 18 + 5 (n=7, mean + SD) on each neuron. Most of the close contact structures were often found on the distal dendrites and the number of the proximal dendrites. There is less, but there is no close contact structure of tyrosine hydroxylase immunoreactivity on the cell body and axon. The source of catecholamine neurotransmitters projecting into the laryngeal motoneurons is studied by injecting the cholera toxin B subunit into the caudal nucleus, and the results show that the isolated bundle of the injection site is on the same side. A large number of retrogradely labeled catecholamine neurons were found in the nucleus and medulla oblongata, and the highest density was found in the caudal part of the latch 0.2-0.4 mm.
Conclusion: we first confirmed the close contact structure of the exhaled laryngeal motoneurons with the tyrosine hydroxylase immunoreactive nerve terminal, indicating that the catecholamine neurotransmitters may play a role in the activity of the exhaled laryngeal motoneurons. The location of the nucleus in the nucleus of the solitary tract and the input information of the superior laryngeal nerve projected to the same level of the nucleus of the solitary tract, indicating that the catecholamines at the latch level in the nucleus of the solitary tract may play an important role in the protective reflex of the upper laryngeal nerve.
Objective: the laryngeal motor neurons, located in the nucleus of the nucleus, express different laryngeal functions by controlling the movement of the intramuscular muscles, including respiratory, vocal, and protective reflex of the airway, such as coughing reflex, sneezing and swallowing reflex. Laryngeal motor neurons accept the transfer of different neurochemicals from different brain nuclei and different neurochemistry. Substances may have different effects and effects on laryngeal motor neurons, resulting in different laryngeal function.P substances. Tyrosine hydroxylase and 5- serotonin immunoreactive nerve terminals have been projected to the laryngeal motoneurons at the level of light microscopy, but their distribution in the nucleus of the nucleus is not clear. The study of the relationship between the immunoreactive nerve terminals and the laryngeal motoneurons at the ultrastructural level is also deficient. This ultrastructural level is a necessary method to confirm the synaptic structure and relationship of the neurochemical. Therefore, the purpose of our study is to evaluate and compare P, tyrosine hydroxylase and 5- hydroxyl. The distribution of serotonin immunoreactive nerve terminals in the caudal caudal segment; (2) the ultrastructural relationship between the immunoreactive synapse terminal of substance P and the laryngeal motoneuron was studied by electrophysiological cell recording, immunohistochemistry and electron microscopy.
Methods: We used multiple immunofluorescence and confocal microscopy to evaluate the distribution of P, tyrosine hydroxylase and 5- serotonin immunoreactive nerve terminals in the nucleus caudal. The nucleus caudal motoneurons were labeled and identified by the immunoreactivity of choline acetyltransferase. Synaptophysin is a synapse. The expression of synaptophysin in the nucleus of the nucleus of the nucleus represents the number of the total synaptic terminals. After the Image J Software Co localization analysis, the regions of synaptosomal positive and substance P, tyrosine hydroxylase, or 5- HT are represented by P matter, tyrosine hydroxylase or 5- hydroxytryptamine. The synaptic terminal region.P substance, tyrosine hydroxylase or 5- serotonin synaptic terminal accounts for the proportion of the total synaptic terminal region, which is used to evaluate and compare the distribution of synaptic terminals in the nucleus caudal. Based on the comparison of the distribution of P, tyrosine hydroxylase and 5- hydroxytryptamine in the caudal segment of the nucleus of the nucleus of the nucleus, We further studied the ultrastructural relationship between the P substance immunoreactive nerve terminal and the laryngeal motoneuron. In an experiment, an inspiratory laryngeal motor neuron was identified and confirmed through intracellular recording, the cervical vagus nerve stimulation and its localization of the nucleus caudal. Then, the nerve biotin (biotinamide, 1.5%) was injected into this inhalation. Sexual laryngeal motoneurons. Immunoreactive structures of neurons and substance P injected with biotin were detected by electron microscopy before embedding immuno histochemical staining, and were displayed at the same time. Ultrathin sections of the immune positive structures of laryngeal motoneurons and substance P were stained and observed and analyzed under electron microscopy.
Results: we found that the P substance, tyrosine hydroxylase or 5- serotonin terminals accounted for no more than 10% of the total synaptic terminals in the total nucleus of the nucleus caudate, and three were not more than 15%. and tyrosine hydroxylase or 5- hydroxytryptamine. The synaptic terminal of substance P had a relatively high intensity ratio in the nucleus of the nucleus. At the ultrastructural level, the synaptic expansion terminal of 53.3% (114/206) forms an asymmetric synaptic structure with the dendrites of the inhaled laryngeal motoneuron, and 22.3% (46/206) forms a symmetric synaptic structure. The other expansion terminals are in contact with the neurons, but there is no clear special synaptic structure. In these 206 nerve terminals, 16% (33/206) is P The substance immunoreactive nerve terminal and the synapse structure.29 formed an asymmetric synaptic structure with the neurons, and 4 formed symmetric synaptic structures. A few P substance immunoreactive terminals formed synaptic structures with the neuronal cell bodies, but there was no discovery of the synaptic structure of the P matter nerve terminal on the axon of the neuron. Non immune response was not found. The sexual nerve terminal also forms a synaptic structure on the dendritic spines, some with special structures under the synapse. On the tissue section of the inspiratory laryngeal motoneurons, several large cell bodies (about 30-40 m in diameter) are also observed, and the non immunoreactive neurons of the nucleus are suspected. They contain large nuclei and obvious nucleolus.
Conclusion: first of all, our results first confirmed that in the rat nucleus of the nucleus, substance P, tyrosine hydroxylase and 5- hydroxytryptamine are only a few of the synapse terminals of synaptopsin immunoreactive, which indirectly indicates the function of P, tyrosine hydroxylase and 5- HT in the function of laryngeal motoneurons. To moderate regulation. Second, we confirmed that substance P immunoreactive nerve terminals form synaptic structures on laryngeal motor neurons. In an experiment, an inspiratory neuron, located in the nucleus of the nucleus, was activated, marked and ultrastructural after stimulation of the vagus nerve of the neck. The labeled neurons accept a large number of symmetry. And asymmetric synaptic transmission. A total of 33 P substances were found to form synaptic structures on the dendrites of the inhaled laryngeal motoneurons. Most of them (29) were asymmetric synapses, and a few (4) were symmetric synapses, indicating that neurons expressing substance P may directly increase and enhance the excitability of the inhaled laryngeal motoneurons. Third, we studied the overall ultrastructure and synapse of large cell neurons in the caudal caudal segment of the inhaled laryngeal motoneurons, and found a large number of symmetrical and asymmetric synaptic structures on these neurons.
Objective: in breathing exercises and other conditions and other activities, such as hypocapnia and sleep, and the regulation of different conditions in the laryngeal muscles. Previous anatomical and pharmacological studies have shown that acetylcholine at the nuclear level plays a role in regulating the activity of the laryngeal motoneurons. The unconsolidated structure contains inhalation and exhalation. The aim of this study is to investigate the anatomical characteristics of cholinergic input to laryngeal motor neurons in the loose structure of nucleus suspected.
Methods: We used intracellular recording, intracellular injection of dyes, and immunohistochemical methods to study the anatomical relationship between laryngeal motor neurons and cholinergic immunoreactive nerve terminals. Synaptophysin is a marker protein of synapse, so the nerve terminal of synaptophysin positive immune response can be seen as a synapse terminal. We use the immunofluorescence method and co localization analysis of confocal microscopy, that is, the analysis of the co localization of the immunoreactivity of the cholinergic positive nerve terminal and the synaptophysin, and further studies and evaluates the cholinergic immunoreactive nerve terminal which has a "close contact" with the laryngeal motoneuron. The proportion of immunopositive to the tactis.
Results: the results confirmed that there was a "close contact" between the exhaled laryngeal motoneurons and the immunoreactive terminals of the vesicular acetylcholine transporter. A total of 12 exhaled laryngeal motoneurons were identified by intracellular recording and labeled by neurobiotin injection. Among them, more vesicle acetyl was found on the exhaled laryngeal motoneurons. Choline transporter immunoreactive nerve terminals formed "close contact" (mean + SD, 32 + 9; n=8), compared with the distal dendrites.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2011
【分類號(hào)】:R338
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉剛;潘世鵬;;聯(lián)合應(yīng)用神經(jīng)營(yíng)養(yǎng)素-4膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子對(duì)脊髓前角運(yùn)動(dòng)神經(jīng)元的保護(hù)作用研究[J];實(shí)用醫(yī)技雜志;2011年08期
2 劉曉艷;康慧聰;胡琦;許峰;李巷;劉志廣;唐坤;胡傳琛;朱遂強(qiáng);;基因修飾的骨髓間充質(zhì)干細(xì)胞移植治療帕金森病的實(shí)驗(yàn)研究[J];華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2011年04期
3 劉新紅;周廣安;;原位雜交檢測(cè)FADD和TH mRNA在PD模型大鼠黑質(zhì)中的表達(dá)變化及與凋亡的關(guān)系[J];泰山醫(yī)學(xué)院學(xué)報(bào);2011年04期
4 朱紅燦;李倩倩;趙靜;羅長(zhǎng)月;臧衛(wèi)東;張華;段東曉;;左旋多巴對(duì)帕金森病大鼠結(jié)腸神經(jīng)遞質(zhì)的影響[J];中國(guó)現(xiàn)代醫(yī)學(xué)雜志;2011年20期
5 李學(xué)孔;張希廉;田軍彪;;抗顫寧方對(duì)帕金森病大鼠行為學(xué)及多巴胺能神經(jīng)元的影響[J];山東醫(yī)藥;2011年36期
6 姜宇;曾水林;徐春華;李鳳飛;楊鎏;韓銀華;;大鼠腹側(cè)中腦多巴胺能神經(jīng)元的形態(tài)學(xué)發(fā)育與分布特征[J];神經(jīng)解剖學(xué)雜志;2011年03期
7 李林;賀建文;;Wistar大鼠脊神經(jīng)根拔除后脊髓前角NOS和GFAP的表達(dá)[J];解剖科學(xué)進(jìn)展;2011年05期
8 徐靜;李艷明;曾曉鋒;趙永和;王尚文;李楨;;甲基苯丙胺中毒大鼠相關(guān)腦區(qū)多巴胺能神經(jīng)毒性研究[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2011年12期
9 付愛(ài)玲;王逸麟;;紋狀體內(nèi)單側(cè)注射6-羥多巴制備小鼠帕金森病模型[J];中國(guó)藥理學(xué)通報(bào);2011年09期
10 朱忠春;胡軍;徐平;;Effect of Acupuncture on Contents of Tyrosine Hydroxylase and Glial Fibrillary Acidic Protein in Ventral Tegmental Area of Heroin Self-administrating Rats[J];Journal of Acupuncture and Tuina Science;2006年01期
相關(guān)會(huì)議論文 前10條
1 王家傳;閆利峰;王亞瓊;周麗華;;創(chuàng)傷后運(yùn)動(dòng)神經(jīng)元nNOS基因的差異表達(dá)[A];2008年神經(jīng)內(nèi)分泌暨神經(jīng)免疫內(nèi)分泌學(xué)術(shù)研討會(huì)論文摘要匯編[C];2008年
2 郭陽(yáng);江新梅;;有機(jī)磷農(nóng)藥對(duì)運(yùn)動(dòng)神經(jīng)元agrin基因表達(dá)影響的研究[A];第十一屆全國(guó)神經(jīng)病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2008年
3 蔡嬌陽(yáng);湯燕靜;蔣黎敏;宋得蓮;潘慈;陳靜;董璐;周敏;薛惠良;湯靜燕;;以TH為靶基因FQ-PCR法檢測(cè)骨髓微量神經(jīng)母細(xì)胞瘤細(xì)胞[A];中國(guó)抗癌協(xié)會(huì)第七屆全國(guó)小兒腫瘤學(xué)術(shù)會(huì)議論文匯編[C];2007年
4 鄭梅;樊東升;;NMDA受體不同亞單位分布造成ALS中運(yùn)動(dòng)神經(jīng)元選擇性易損[A];中華醫(yī)學(xué)會(huì)第十三次全國(guó)神經(jīng)病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
5 陳麗;井緒東;何冬梅;張洹;;體外誘導(dǎo)大鼠骨髓間充質(zhì)干細(xì)胞表達(dá)酪氨酸羥化酶[A];第11次中國(guó)實(shí)驗(yàn)血液學(xué)會(huì)議論文匯編[C];2007年
6 邱一華;彭聿平;姜建民;王建軍;;酪氨酸羥化酶在免疫系統(tǒng)中的表達(dá)及其對(duì)淋巴細(xì)胞功能的影響[A];中國(guó)生理學(xué)會(huì)第21屆全國(guó)代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2002年
7 吳以嶺;;肌萎靈注射液對(duì)免疫性運(yùn)動(dòng)神經(jīng)元損傷小鼠的影響[A];第四次全國(guó)中西醫(yī)結(jié)合神經(jīng)系統(tǒng)疾病學(xué)術(shù)研討會(huì)論文集[C];2002年
8 何曉闊;何國(guó)厚;王云甫;;rTMS對(duì)帕金森鼠黑質(zhì)抗酪氨酸羥化酶抗體陽(yáng)性標(biāo)記的的影響[A];中華醫(yī)學(xué)會(huì)第八次全國(guó)物理醫(yī)學(xué)與康復(fù)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2006年
9 趙文靜;郭瑞臣;Robert G.Berkowitzl;Paul M.Pilowsky;;大鼠喉運(yùn)動(dòng)神經(jīng)元接受兒茶酚胺類神經(jīng)遞質(zhì)的投射[A];第十三屆中國(guó)科協(xié)年會(huì)生物醫(yī)藥博士論壇論文集[C];2011年
10 李云慶;高蓉;李輝;;大鼠臂旁核含神經(jīng)加壓素、P物質(zhì)、酪氨酸羥化酶、腦啡肽和降鈣素基因相關(guān)肽的神經(jīng)元向杏仁核投射[A];解剖學(xué)雜志——中國(guó)解剖學(xué)會(huì)2002年年會(huì)文摘匯編[C];2002年
相關(guān)重要報(bào)紙文章 前10條
1 洪敏 編譯;2008年重要基礎(chǔ)醫(yī)藥研究成果回顧[N];中國(guó)醫(yī)藥報(bào);2008年
2 衣曉峰 陳英云 喬蕤琳;專家通過(guò)建立孤雌胚胎干細(xì)胞首次分化獲得運(yùn)動(dòng)神經(jīng)元[N];中國(guó)醫(yī)藥報(bào);2010年
3 哈爾濱醫(yī)科大學(xué)組胚研究室主任 雷蕾 整理 衣曉峰 陳英云 喬蕤琳;孤雌胚胎干細(xì)胞 成功分化運(yùn)動(dòng)神經(jīng)元[N];健康報(bào);2011年
4 孝文;2008年十大醫(yī)學(xué)突破[N];北京日?qǐng)?bào);2008年
5 馮衛(wèi)東;美將患者皮膚細(xì)胞轉(zhuǎn)變成運(yùn)動(dòng)神經(jīng)元[N];科技日?qǐng)?bào);2008年
6 王俊鳴;我學(xué)者用人類干細(xì)胞分化出運(yùn)動(dòng)神經(jīng)元[N];科技日?qǐng)?bào);2005年
7 陳勇;人類干細(xì)胞成功分化出運(yùn)動(dòng)神經(jīng)元[N];醫(yī)藥經(jīng)濟(jì)報(bào);2005年
8 陳英云 喬蕤琳 記者 姜雪松;哈醫(yī)大專家首次分化出運(yùn)動(dòng)神經(jīng)元[N];哈爾濱日?qǐng)?bào);2010年
9 本報(bào)記者 陳磊;眼睛運(yùn)動(dòng)如何窺探大腦命令?[N];科技日?qǐng)?bào);2007年
10 劉元江;讓癱瘓小鼠站起來(lái)[N];醫(yī)藥經(jīng)濟(jì)報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 趙文靜;大鼠喉運(yùn)動(dòng)神經(jīng)元的呼吸功能和非呼吸功能的中樞調(diào)控[D];山東大學(xué);2011年
2 周暉暉;運(yùn)動(dòng)神經(jīng)元間突觸聯(lián)系的形態(tài)學(xué),電生理,以及模型研究[D];中國(guó)協(xié)和醫(yī)科大學(xué);2000年
3 李愛(ài)輝;穴位和經(jīng)絡(luò)的神經(jīng)生物學(xué)機(jī)制探討[D];中國(guó)協(xié)和醫(yī)科大學(xué);2004年
4 孫鴻斌;Ca~(2+)對(duì)周圍神經(jīng)損傷后運(yùn)動(dòng)神經(jīng)元作用的實(shí)驗(yàn)研究[D];吉林大學(xué);2004年
5 吳少平;酪氨酸羥化酶及其活性片段在帕金森病中的作用[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2006年
6 楊景全;骨髓間充質(zhì)干細(xì)胞對(duì)臂叢根性撕脫傷脊髓運(yùn)動(dòng)神經(jīng)元保護(hù)作用的實(shí)驗(yàn)研究[D];吉林大學(xué);2007年
7 李彬;脂多糖對(duì)脊髓前角運(yùn)動(dòng)神經(jīng)元的損傷作用及機(jī)制探討[D];河北醫(yī)科大學(xué);2008年
8 邵志成;來(lái)源于大鼠脊髓星形膠質(zhì)細(xì)胞的神經(jīng)干細(xì)胞誘導(dǎo)分化成運(yùn)動(dòng)神經(jīng)元的研究[D];上海交通大學(xué);2011年
9 顧加祥;質(zhì)粒為載體的hIGF-1治療周圍神經(jīng)損傷的實(shí)驗(yàn)研究[D];吉林大學(xué);2006年
10 鄭欣;一、嗜鉻細(xì)胞瘤基因差異表達(dá)的研究 二、腎上腺髓質(zhì)素對(duì)原代培養(yǎng)的人嗜鉻細(xì)胞瘤細(xì)胞中兒茶酚胺水平的影響[D];中國(guó)協(xié)和醫(yī)科大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 許舸;鎘對(duì)雄性大鼠脊髓下腰段運(yùn)動(dòng)神經(jīng)元的影響[D];重慶醫(yī)科大學(xué);2005年
2 胡悅育;A型肉毒毒素局部注射對(duì)遠(yuǎn)隔部位F波影響的臨床研究[D];浙江大學(xué);2005年
3 韓力;臂叢神經(jīng)根性撕脫傷后神經(jīng)根回植的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2006年
4 何曉欣;Osteopontin在脊髓運(yùn)動(dòng)神經(jīng)元凋亡過(guò)程中表達(dá)的變化及其意義[D];中國(guó)醫(yī)科大學(xué);2006年
5 吳斗;周圍神經(jīng)損傷后GDNF對(duì)脊髓前角運(yùn)動(dòng)神經(jīng)元保護(hù)作用的實(shí)驗(yàn)研究[D];山西醫(yī)科大學(xué);2002年
6 劉克;大鼠足厥陰肝經(jīng)與足少陰腎經(jīng)和足陽(yáng)明胃經(jīng)的形態(tài)學(xué)研究[D];中國(guó)協(xié)和醫(yī)科大學(xué);2006年
7 王偉;大鼠臂叢神經(jīng)根生物力學(xué)特性及損傷后對(duì)相應(yīng)脊髓運(yùn)動(dòng)神經(jīng)元凋亡的影響[D];安徽醫(yī)科大學(xué);2004年
8 周強(qiáng);臂叢神經(jīng)根撕脫回植后應(yīng)用神經(jīng)干細(xì)胞的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2008年
9 孔衛(wèi)國(guó);誘導(dǎo)人骨髓間充質(zhì)干細(xì)胞向運(yùn)動(dòng)神經(jīng)元分化的研究[D];南昌大學(xué);2010年
10 黃志芳;大鼠交感神經(jīng)節(jié)中HAP1和TH共存的實(shí)驗(yàn)研究及化學(xué)性交感神經(jīng)阻斷對(duì)大鼠內(nèi)臟運(yùn)動(dòng)神經(jīng)節(jié)HAP1表達(dá)的影響[D];華中科技大學(xué);2008年
,本文編號(hào):2157377
本文鏈接:http://sikaile.net/xiyixuelunwen/2157377.html