基于毛細(xì)管電泳的量子點(diǎn)生物探針分離檢測新技術(shù)研究
[Abstract]:With the development of life science, the complexity of the biological samples to be measured is becoming more and more complex, which puts forward higher requirements for the detection sensitivity, efficiency, speed, flux and cost of the analytical methods. As a new type of fluorescence probe, the quantum dots have the optical properties incomparable with the organic fluorescent dyes and the fluorescent egg white. In recent years, the quantum dots are based on the quantum dots. Fluorescence analysis has been widely used in the field of biological analysis. On the other hand, as a differential separation technology with high resolution, high sensitivity, high speed, high throughput and low sample consumption, capillary electrophoresis has a broad application prospect in the field of biological analysis. Based on this, the above two analytical methods are combined and established in this paper. A new analytical method based on quantum dot probe and capillary electrophoresis (using quantum dots as a fluorescent probe, capillary electrophoresis fluorescence detection as an analytical method), and its application in bioanalysis and detection is studied. The work completed in this paper is as follows:
(1) the capillary sieving electrophoresis was used to separate the water soluble CdSe/ZnS core shell quantum dots with different particle sizes, and the types and concentrations of the sieve medium, the concentration of the buffer solution and the pH, the effect of the separation voltage on the separation of the quantum dots were discussed. Under these conditions, the quantum dots of four different particle sizes were effectively separated and reproduced. The maximum relative standard deviation of the migration time is 1.01%, and there is a good correlation between the electrophoretic mobility and the particle size of the quantum dots (R2=0.997). The experiment proves that this method can be used to measure the particle size of the water soluble CdSe/ZnS nuclear point quantum dots. It provides an important reference for bioanalysis based on capillary electrophoresis and quantum dots fluorescent probes.
(2) the CdTe quantum dots with emission wavelength of 532 nm and the CdSe/ZnS quantum dots of 632 nm are used as donors and receptors of the fluorescence resonance energy transfer system. The above two quantum dots are labeled on the mice 1gG and the Sheep anti mouse 1gG respectively by covalent coupling method, and the immune affinity between the antigen and the antibody is close to two quantum dots. Distance, which leads to the occurrence of fluorescence resonance energy transfer between the donor and the receptor. We analyzed the above fluorescence resonance energy transfer by capillary electrophoresis. In order to detect the fluorescence intensity changes of the two quantum dots at the same time, we used two fixed detection wavelength channels to carry out the fluorescence intensity of the donor and the receptor respectively. At the same time, the fluorescence resonance energy transfer efficiency (38.56-69.58%) of the donor and the receptor was measured accurately, while the fluorescence resonance energy transfer system was successfully separated from other "excess" fluorescence by capillary electrophoresis. The fluorescence resonance energy transfer efficiency (12.77-52.37%) obtained by the fluorescence intensity measurement method is improved to a certain extent, and the observation of the fluorescence resonance energy transfer is more intuitive, the sensitivity is higher, and the sample consumption is less. This work provides a new analytical method for the study of fluorescence resonance energy transfer.
(3) using the avidin biotin system and the direct covalent coupling method, the CdTe quantum dots with the fluorescence emission wavelength of 585 and 650 nm were connected with the two molecular beacons with different base sequences, and two quantum dot molecular beacons were constructed and the capillaries of the quantum dot sub beacon probe hybridized with the different targets were obtained. The results of tube electrophoresis show that these two quantum dots - molecular beacon probes are only specific to the targets that are completely complementary to their ring part sequences, and all have the ability to recognize single base mutations. Using these two quantum dots - molecular beacon probes, we have accomplished two loci of specific nucleic acid sequences by capillary electrophoresis. The simultaneous detection of single base mutation has not only provided an important means for the detection of single nucleotide mutation in multiple sites in the future, but also has a wide application prospect in the field of high sensitivity detection and single nucleotide polymorphisms.
(4) the CdSe/ZnS quantum dots and gold nanoparticles were coupled with the complementary DNA single strand of different base lengths, and the quantum dots were connected to gold nanoparticles through the complementary hybridization of the DNA chain. A model was constructed to study the fluorescence of the metal enhanced quantum dots in the solution. Then the gold nanoparticles were investigated by capillary electrophoresis. The effect of the distance between the particles and the quantum dots on the fluorescence enhancement of the quantum dots. The experimental results show that the fluorescence of the gold nanoparticles in the solution has a strong distance dependence. Only when the gold nanoparticles and the quantum dots are apart from 6.8-18.7nm, the quantum dots appear to be enhanced by the fluorescence enhancement, and the 11.9 nm is a gold nanoparticle enhanced quantum dot fluorescein. At the best distance of the light, the fluorescence intensity of the quantum dots is enhanced to 2.3 times that of the original. Then, we add the same base sequence of the DNA chain to the quantum dots in the system of quantum dots and the nano gold particles 11.9 nm apart, and use the specific competition between the target DNA and the quantum dot -DNA to achieve the DNA of the 19.6 PG (15 nM). This work not only provides an important reference for the study of metal enhanced quantum dot fluorescence in the future, but also has a wide range of applications in the fields such as DNA hybridization analysis and high sensitivity DNA detection.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2011
【分類號】:R346
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;[J];;年期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會議論文 前10條
1 趙文杰;趙曉寅;施國躍;周天舒;;毛細(xì)管電泳激光誘導(dǎo)熒光法對TBBPA暴露下大鼠體內(nèi)甲狀腺激素含量影響的研究[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
2 趙文杰;趙曉寅;施國躍;周天舒;;毛細(xì)管電泳激光誘導(dǎo)熒光法用于TBBPA暴露下的大鼠體內(nèi)谷胱甘肽含量影響的研究[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
3 劉彥明;;毛細(xì)管電泳化學(xué)發(fā)光/電化學(xué)發(fā)光檢測研究進(jìn)展[A];中國化學(xué)會第十屆全國發(fā)光分析學(xué)術(shù)研討會論文集[C];2011年
4 李翠平;汪海林;;高靈敏的量子點(diǎn)介導(dǎo)的毛細(xì)管電泳DNA分離分析[A];中國化學(xué)會第28屆學(xué)術(shù)年會第2分會場摘要集[C];2012年
5 張東明;付敏;馬萬云;陳瓞延;;用激光誘導(dǎo)熒光結(jié)合毛細(xì)管電泳測定單胺類神經(jīng)遞質(zhì)[A];中國儀器儀表學(xué)會第三屆青年學(xué)術(shù)會議論文集(上)[C];2001年
6 向彩云;孟祥英;梁汝萍;邱建丁;;毛細(xì)管電泳電化學(xué)發(fā)光在手性氨基酸分離中的應(yīng)用[A];中國化學(xué)會第28屆學(xué)術(shù)年會第9分會場摘要集[C];2012年
7 段海波;楊峗金;丁中濤;曹秋娥;;丹參中三種丹參酮的區(qū)帶毛細(xì)管電泳分析[A];中國化學(xué)會第十五屆全國有機(jī)分析及生物分析學(xué)術(shù)研討會論文集[C];2009年
8 武靜;陳巍;屈鋒;;IgG與DNA文庫相互作用的毛細(xì)管電泳方法研究[A];全國生物醫(yī)藥色譜學(xué)術(shù)交流會(2010景德鎮(zhèn))論文集[C];2010年
9 邸欣;王曉暉;范巖;孫琦為;;毛細(xì)管區(qū)帶電泳法測定魚腥草素鈉片的含量[A];第十五次全國色譜學(xué)術(shù)報告會文集(下冊)[C];2005年
10 曲寧;陳競;夏弈明;;毛細(xì)管電泳測定血清胸腺因子方法的研究[A];中國營養(yǎng)學(xué)會第六屆微量元素營養(yǎng)學(xué)術(shù)會議論文摘要匯編[C];1999年
相關(guān)重要報紙文章 前10條
1 長春應(yīng)化所;毛細(xì)管電泳電化學(xué)發(fā)光檢測儀研發(fā)成功[N];中國電子報;2003年
2 白毅 于洋;長春應(yīng)化所在電化學(xué)領(lǐng)域取得創(chuàng)新性成果[N];中國醫(yī)藥報;2010年
3 記者任福海;化學(xué)生物分析平臺添新成員[N];中國技術(shù)市場報;2010年
4 于柏林;毛細(xì)管電泳微型分析儀研制成功[N];中國化工報;2009年
5 劉春;毛細(xì)管電泳電化學(xué)發(fā)光微型綜合分析儀通過鑒定[N];中國醫(yī)藥報;2009年
6 ;羅國安破解中藥秘訣的人[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2004年
7 ;飛速發(fā)展的微流體芯片[N];中國醫(yī)藥報;2002年
8 ;北京地區(qū)PKU篩查、診療及基因分析[N];中國醫(yī)藥報;2003年
9 記者 蔡忠仁;專家研討離子色譜技術(shù)新課題[N];中國化工報;2008年
10 記者趙偉 通訊員于柏林;微型綜合分析儀在長通過驗收[N];長春日報;2009年
相關(guān)博士學(xué)位論文 前10條
1 柏建國;毛細(xì)管電泳及其電化學(xué)發(fā)光在食品和生物檢測中的應(yīng)用[D];吉林大學(xué);2010年
2 董秀玲;臨床毛細(xì)管電泳的研究[D];中國科學(xué)院大連化學(xué)物理研究所;2001年
3 石美;毛細(xì)管電泳/間接紫外法對離子的檢測條件優(yōu)化與理論分析[D];中國礦業(yè)大學(xué);2011年
4 何新亞;以DNA為一方的分子間相互作用的毛細(xì)管電泳研究[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2004年
5 朱華東;毛細(xì)管電泳在線富集新技術(shù)及新型FI-CE體系研究[D];蘭州大學(xué);2011年
6 齊莉;手性配體交換毛細(xì)管電泳方法發(fā)展及酶反應(yīng)動力學(xué)的研究[D];河北大學(xué);2011年
7 李永強(qiáng);基于毛細(xì)管電泳的量子點(diǎn)生物探針分離檢測新技術(shù)研究[D];華中科技大學(xué);2011年
8 孫國祥;毛細(xì)管電泳基礎(chǔ)理論與方法學(xué)及應(yīng)用研究[D];沈陽藥科大學(xué);2003年
9 石先哲;基于毛細(xì)管電泳的基因分析方法及腫瘤遺傳背景研究[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2004年
10 熊建輝;毛細(xì)管電泳分離條件優(yōu)化和譜圖信息提取的化學(xué)計量學(xué)方法研究[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2004年
相關(guān)碩士學(xué)位論文 前10條
1 問海芳;毛細(xì)管電泳電化學(xué)發(fā)光在某些局麻藥分析中的應(yīng)用研究[D];河北大學(xué);2009年
2 凌妲思;電動流動分析系統(tǒng)以及毛細(xì)管電泳綠色前處理技術(shù)的研究[D];中國科學(xué)技術(shù)大學(xué);2010年
3 王金妍;毛細(xì)管電泳—安培檢測在食品及化妝品分析中的應(yīng)用研究[D];華東師范大學(xué);2010年
4 謝路冰;基于ARM的毛細(xì)管電泳高壓電源設(shè)計[D];大連理工大學(xué);2010年
5 溫瑩瑩;定量結(jié)構(gòu)—性質(zhì)關(guān)系及其在毛細(xì)管電泳中的應(yīng)用[D];煙臺大學(xué);2010年
6 張海濤;毛細(xì)管電泳—電化學(xué)檢測在疾病監(jiān)測和中藥分析中的應(yīng)用研究[D];華東師范大學(xué);2010年
7 李娜;微流控芯片空間溫度梯度毛細(xì)管電泳系統(tǒng)檢測DNA突變的研究[D];東北大學(xué);2008年
8 蓋麗娟;提高毛細(xì)管電泳表征中藥材重現(xiàn)性的方法研究[D];河北大學(xué);2010年
9 史海軍;兩種環(huán)糊精衍生物在毛細(xì)管電泳拆分常見手性藥物中的應(yīng)用研究[D];蘭州大學(xué);2010年
10 銀慧慧;毛細(xì)管電泳—電化學(xué)發(fā)光在三種含胺類藥物分析中的研究與應(yīng)用[D];廣西師范大學(xué);2010年
,本文編號:2146381
本文鏈接:http://sikaile.net/xiyixuelunwen/2146381.html