天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

ROCK激酶在Ⅱ型登革病毒感染誘導(dǎo)波形蛋白纖維重排中的作用研究

發(fā)布時(shí)間:2018-05-16 07:50

  本文選題:登革病毒 + ECV304細(xì)胞 ; 參考:《第三軍醫(yī)大學(xué)》2012年碩士論文


【摘要】:登革病毒(dengue virus,DENV)是黃病毒科黃病毒屬的單股正鏈RNA病毒,根據(jù)其E蛋白的抗原性不同,可分為四種血清型,即DENV1-4。登革病毒主要通過蚊媒傳播,廣泛流行于熱帶和亞熱帶地區(qū),引起人類登革熱(dengue fever,DF)和登革出血熱/休克綜合癥(dengue hemorrhagic fever/dengue shock syndrome, DHF/DSS)。全世界每年約有5000萬至1億感染者,其中約50萬為DHF/DSS患者,如未及時(shí)治療致死率可高達(dá)50%,登革病毒感染已成為亟待解決的公共衛(wèi)生問題。而目前對(duì)于DENV感染仍無有效的疫苗和特異性藥物,預(yù)防主要依賴于對(duì)蚊媒的控制。因此深入研究DENV與宿主細(xì)胞相互作用的機(jī)制,將有助于闡明DENV的致病機(jī)制和尋找防治的突破點(diǎn)。 病毒是一類具有高度寄生性的微生物,它完全依賴宿主細(xì)胞的能量和代謝系統(tǒng),獲取生命活動(dòng)所需的物質(zhì)與能量。病毒的復(fù)制和裝配通常在細(xì)胞內(nèi)的特定區(qū)域進(jìn)行,多種病毒在核周區(qū)域或者細(xì)胞質(zhì)中形成由細(xì)胞骨架、細(xì)胞器、特定的細(xì)胞內(nèi)膜構(gòu)成的特殊結(jié)構(gòu),稱為“病毒工廠”(virus factories),其功能可能是為病毒的復(fù)制和裝配提供了相對(duì)獨(dú)立的空間,以排除宿主細(xì)胞蛋白酶和細(xì)胞器對(duì)復(fù)制過程的干擾。黃病毒科病毒的病毒工廠構(gòu)成與內(nèi)質(zhì)網(wǎng)、高爾基體和線粒體密切相關(guān),而DENV在宿主細(xì)胞中形成的病毒工廠的構(gòu)成尚不清楚。有研究表明,多種病毒的病毒工廠構(gòu)建過程與波形蛋白纖維密切相關(guān)。我們的前期工作顯示:DENV2感染可誘導(dǎo)ECV304細(xì)胞波形蛋白纖維發(fā)生重排,波形蛋白絲從細(xì)胞邊緣回縮并環(huán)繞細(xì)胞核,與病毒蛋白呈共同分布,利用丙烯酰胺破壞波形蛋白纖維,可明顯抑制DENV2的復(fù)制和產(chǎn)生,但其機(jī)制尚不清楚。波形蛋白纖維的重排通常是由激酶磷酸化其頭部區(qū)結(jié)構(gòu)域所致,研究表明激活ROCK激酶(Rho-associatedcoiled coil-containing kinase,ROCK)使波形蛋白頭部磷酸化位點(diǎn)Ser71磷酸化而發(fā)生重排,但其是否在DENV2感染誘導(dǎo)波形蛋白纖維重排中發(fā)揮作用需要進(jìn)一步研究。 基于ROCK激酶在波形蛋白纖維重排中的重要作用,以及DENV2感染引起波形蛋白纖維重排這一現(xiàn)象,結(jié)合前期實(shí)驗(yàn)結(jié)果,本研究擬以ROCK激酶為主要研究對(duì)象,觀察波形蛋白纖維、內(nèi)質(zhì)網(wǎng)、高爾基體和線粒體與DENV2病毒工廠構(gòu)成的關(guān)系,檢測(cè)DENV2感染后宿主細(xì)胞波形蛋白磷酸化水平及ROCK激酶活性的變化的改變,并利用特異性抑制劑抑制ROCK激酶活性,驗(yàn)證DENV2感染可能激活ROCK激酶活性、誘導(dǎo)波形蛋白磷酸化和重排、參與形成病毒工廠的推論,闡明ROCK激酶在DENV2感染誘導(dǎo)波形蛋白纖維重排中的作用,為預(yù)防和控制DENV2感染提供新思路。 本研究的主要實(shí)驗(yàn)內(nèi)容和結(jié)論如下: 1.形態(tài)學(xué)觀察波形蛋白纖維及相關(guān)細(xì)胞器與DENV2病毒工廠構(gòu)成的關(guān)系 本實(shí)驗(yàn)使用標(biāo)記物質(zhì)特異性標(biāo)記細(xì)胞波形蛋白、內(nèi)質(zhì)網(wǎng)、高爾基體和線粒體,以細(xì)胞免疫熒光染色觀察波形蛋白纖維及相關(guān)細(xì)胞器與DENV2病毒工廠構(gòu)成的關(guān)系。結(jié)果顯示:對(duì)照組波形蛋白纖維從細(xì)胞核至細(xì)胞邊緣呈網(wǎng)狀分布,而DENV2感染組細(xì)胞波形蛋白纖維網(wǎng)狀結(jié)構(gòu)塌陷發(fā)生重排,主要表現(xiàn)為(1)波形蛋白纖維絲由細(xì)胞邊緣回縮至細(xì)胞核一側(cè)聚集,形成包繞病毒NS1/E蛋白的籠狀結(jié)構(gòu)(2)波形蛋白纖維絲由細(xì)胞邊緣回縮環(huán)繞細(xì)胞核,與病毒NS1/E蛋白呈明顯共分布;對(duì)照組細(xì)胞內(nèi)質(zhì)網(wǎng)在胞質(zhì)內(nèi)呈均勻彌漫分布,而DENV2感染組細(xì)胞內(nèi)質(zhì)網(wǎng)回縮聚集于核周,與病毒NS1/NS3蛋白呈明顯共分布;高爾基體形態(tài)及分布未發(fā)生明顯改變,在感染后48h可觀察到與病毒E蛋白呈共分布;線粒體在感染后48h形態(tài)由管網(wǎng)狀變?yōu)辄c(diǎn)泡狀,沒有與病毒蛋白共分布。結(jié)果提示高爾基體可能與病毒結(jié)構(gòu)蛋白的轉(zhuǎn)運(yùn)和成熟有關(guān),線粒體可能參與了病毒導(dǎo)致的線粒體途徑的凋亡過程,兩者似乎并不參與DENV2病毒工廠的形成。而波形蛋白纖維和內(nèi)質(zhì)網(wǎng)可能共同參與了DENV2在ECV304細(xì)胞中病毒工廠的形成。 2.DENV2感染誘導(dǎo)的波形蛋白纖維重排與波形蛋白Ser71磷酸化密切相關(guān) ROCK激酶可以特異性地使波形蛋白頭部磷酸化位點(diǎn)Ser71磷酸化,從而導(dǎo)致波形蛋白纖維發(fā)生重排,因此本實(shí)驗(yàn)使用能識(shí)別Ser71磷酸化波形蛋白的單克隆抗體,以細(xì)胞免疫熒光染色觀察DENV2感染后Ser71磷酸化波形蛋白與病毒蛋白的分布關(guān)系。結(jié)果顯示:Ser71磷酸化的波形蛋白纖維分布與DENV2感染誘導(dǎo)波形蛋白重排形成的結(jié)構(gòu)相似,且與病毒蛋白明顯共存。這提示DENV2誘導(dǎo)的波形蛋白纖維重排與波形蛋白Ser71磷酸化密切相關(guān),DENV2感染可能通過激活ROCK激酶使波形蛋白Ser71磷酸化導(dǎo)致波形蛋白纖維發(fā)生重排。 3.DENV2感染導(dǎo)致ECV304細(xì)胞內(nèi)波形蛋白纖維發(fā)生重排,使用Y-27632抑制ROCK激酶活性能顯著抑制波形蛋白纖維重排現(xiàn)象。 免疫熒光染色結(jié)果顯示:對(duì)照組細(xì)胞各時(shí)相點(diǎn)波形蛋白纖維形態(tài)沒有明顯變化,從細(xì)胞核至細(xì)胞邊緣呈網(wǎng)狀分布,而DENV2感染組細(xì)胞感染后30min時(shí)即可觀察到波形蛋白纖維網(wǎng)狀結(jié)構(gòu)開始塌陷,纖維絲由細(xì)胞邊緣回縮,感染后1h時(shí)波形蛋白纖維重排至核周區(qū)域,聚集于細(xì)胞核一側(cè),感染后8h時(shí)波形蛋白纖維環(huán)繞細(xì)胞核,感染后24h時(shí)波形蛋白纖維以上述兩種重排后的形態(tài)共同存在,并呈濃縮分布使局部熒光強(qiáng)度增強(qiáng)。這一結(jié)果提示波形蛋白纖維發(fā)生重排與DENV2在ECV304細(xì)胞中的感染與復(fù)制周期密切相關(guān)。 使用ROCK激酶特異性抑制劑Y-27632抑制ROCK激酶活性后進(jìn)行感染實(shí)驗(yàn),以免疫熒光染色觀察波形蛋白纖維的形態(tài)變化。結(jié)果顯示:只加入DENV2的對(duì)照組中波形蛋白纖維發(fā)生重排,而Y-27632藥物處理組各時(shí)間點(diǎn)的波形蛋白纖維形態(tài)保持了原有的纖維網(wǎng)狀結(jié)構(gòu),未發(fā)生明顯的形態(tài)變化。這提示ROCK激酶在DENV2感染誘導(dǎo)的波形蛋白纖維重排中發(fā)揮了重要作用,使用藥物抑制ROCK激酶活性能顯著抑制DENV2感染誘導(dǎo)的波形蛋白纖維重排。 4. DENV2感染導(dǎo)致波形蛋白Ser71磷酸化水平顯著升高,使用Y-27632抑制ROCK激酶活性能顯著抑制波形蛋白Ser71磷酸化 為進(jìn)一步研究波形蛋白Ser71磷酸化在DENV2感染中的作用,本實(shí)驗(yàn)使用能識(shí)別Ser71磷酸化波形蛋白的單克隆抗體,以Western blot檢測(cè)DENV2感染后ECV304細(xì)胞內(nèi)波形蛋白表達(dá)及Ser71磷酸化水平的變化。結(jié)果顯示: DENV2感染過程中各時(shí)相點(diǎn)的波形蛋白表達(dá)沒有明顯差異,而Ser71磷酸化水平在感染后30min時(shí)升高至對(duì)照組的176.3%,8h時(shí)增高至對(duì)照組的333.2%達(dá)到峰值,12h時(shí)呈明顯下降的趨勢(shì),達(dá)到對(duì)照組的203.5%,其余時(shí)間點(diǎn)相比對(duì)照組沒有顯著差異。這一結(jié)果提示DENV2感染過程中波形蛋白表達(dá)量未受影響,但Ser71磷酸化水平變化與DENV2的感染和復(fù)制過程密切相關(guān)。 使用ROCK激酶特異性抑制劑Y-27632抑制ROCK激酶活性后進(jìn)行感染實(shí)驗(yàn),以Western blot檢測(cè)波形蛋白Ser71磷酸化水平的變化。結(jié)果顯示:與只加入DENV2的對(duì)照組相比,Y-27632藥物處理組各時(shí)間點(diǎn)的Ser71磷酸化波形蛋白水平顯著降低,感染后30min時(shí)降低至對(duì)照組的51.42%,1h時(shí)降低至42.42%,8h時(shí)降低至54.01%,24h時(shí)降低至46.76%。結(jié)果提示ROCK激酶在DENV2感染復(fù)制過程中發(fā)揮了重要作用,使用藥物持續(xù)抑制ROCK激酶活性能顯著抑制DENV2感染誘導(dǎo)的波形蛋白Ser71磷酸化,從而抑制波形蛋白纖維發(fā)生重排。 5. DENV2感染導(dǎo)致ROCK激酶活性水平顯著升高 本實(shí)驗(yàn)使用ROCK激酶活性檢測(cè)試劑盒,分別檢測(cè)滅活病毒感染的對(duì)照組和一般感染組ECV304細(xì)胞中不同時(shí)相點(diǎn)ROCK激酶活性水平。結(jié)果顯示:在感染后15min、30min和8h時(shí)ROCK激酶活性較對(duì)照組顯著升高,15min時(shí)升高了243.75%,30min時(shí)下降至177.19%,8h時(shí)升高至216.18%,其余時(shí)間點(diǎn)ROCK激酶水平較對(duì)照組沒有明顯變化。這一結(jié)果提示ROCK激酶活性主要是在DENV2吸附和穿入ECV304細(xì)胞的過程中明顯升高,之后回復(fù)初始水平,而在病毒從ECV304細(xì)胞中釋放的關(guān)鍵時(shí)間點(diǎn)8h時(shí)再次明顯上升,然后降低至初始水平。 綜上所述,本實(shí)驗(yàn)初步確定DENV2感染導(dǎo)致ECV304細(xì)胞波形蛋白纖維重排,并和內(nèi)質(zhì)網(wǎng)一起參與DENV2病毒工廠的形成;病毒感染過程中ROCK激酶活性明顯升高,并引發(fā)其所對(duì)應(yīng)波形蛋白Ser71磷酸化位點(diǎn)的磷酸化水平升高;使用藥物抑制ROCK激酶活性能顯著抑制DENV2感染誘導(dǎo)的波形蛋白Ser71磷酸化和波形蛋白纖維重排。上述實(shí)驗(yàn)結(jié)果初步驗(yàn)證了DENV2感染可能激活ROCK激酶活性、誘導(dǎo)波形蛋白磷酸化和重排、參與形成病毒工廠的推論,闡明ROCK激酶在DENV2感染誘導(dǎo)波形蛋白纖維重排中的作用。
[Abstract]:Dengue virus (DENV) is a single strand RNA virus of the yellow virus of the family yellows. According to the antigenicity of the E protein, it can be divided into four serotypes. That is, the DENV1-4. dengue virus is spread mainly through mosquito vectors and is widely prevalent in tropical and subtropical regions, causing human dengue fever (dengue fever, DF) and dengue hemorrhagic / shock heald. Dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are about 50 million to 100 million infected people in the world each year, about 500 thousand of which are DHF/DSS patients, if the mortality rate can be as high as 50%, and dengue virus infection has become an urgent problem for public health. At present, there is still no effective vaccine and specificity for DENV infection. Drug prevention is mainly dependent on the control of mosquito vectors. Therefore, a thorough study of the mechanism of the interaction between DENV and host cells will help to elucidate the pathogenesis of DENV and to find a breakthrough in the prevention and treatment.
Viruses are highly parasitic microorganisms that depend entirely on the energy and metabolic systems of the host cells to obtain the material and energy needed for life activities. The replication and assembly of the virus is usually carried out in specific regions of the cell, and many viruses form the cytoskeleton, organelles, and specific fines in the perinuclear region or cytoplasm. The special structure of the endometrium, known as the "virus factories", has the function of providing a relatively independent space for the replication and assembly of the virus to exclude the interference of the host cell protease and organelles to the replication process. The virus factory of the flavivirid virus is composed of the endoplasmic reticulum, the Golgi body and the mitochondria. The composition of the virus factory formed by DENV in the host cells is not clear. Studies have shown that the process of plant construction of a variety of viruses is closely related to the vimentin fiber. Our previous work showed that DENV2 infection could induce rearrangement of vimentin fibers in ECV304 cells, and vimentin filament retracted from the edge of the cell and ring. There is a common distribution between the nucleus and the virus protein. Using acrylamide to destroy the vimentin fiber can obviously inhibit the replication and production of DENV2, but its mechanism is not clear. The rearrangement of vimentin fiber is usually caused by the kinase phosphorylation of its head region, and the study shows that the activation of ROCK kinase (Rho-associatedcoiled coil-containing) is shown. Kinase, ROCK) rearranged the phosphorylation site of vimentin on the phosphorylation site Ser71, but it needs further study whether it plays a role in the DENV2 infection induced vimentin fiber rearrangement.
Based on the important role of ROCK kinase in the rearrangement of vimentin fiber and the rearrangement of vimentin (vimentin) caused by DENV2 infection, combined with the previous experimental results, this study aims to study the relationship between vimentin fiber, endoplasmic reticulum, Golgi body and mitochondria and the DENV2 virus factory, and the detection of DENV 2 the changes in the level of vimentin phosphorylation and ROCK kinase activity after infection, and the inhibition of ROCK kinase activity by specific inhibitors, verify that DENV2 infection may activate ROCK kinase activity, induce vimentin phosphorylation and rearrangement, participate in the formation of virus factory, and clarify that ROCK kinase induces a waveform egg in DENV2 infection. The role of white fiber rearrangement is a new way to prevent and control DENV2 infection.
The main contents and conclusions of this study are as follows:
1. morphological observation of vimentin fibers and associated organelles and their relationship with DENV2 virus factories
The relationship between vimentin fiber and related organelles and the DENV2 virus factory was observed by labeling material specifically with vimentin, endoplasmic reticulum, Golgi apparatus and mitochondria. The results showed that the vimentin fiber in the control group was reticulate from the nucleus to the edge of the cell, and DENV2 infection was found in the control group. The rearrangement of the reticular formation of vimentin fibers in the group cells was manifested as (1) the vimentin filament was retracted from the edge of the cell to the nucleus of the nucleus and formed a cage like structure wrapped around the virus NS1/E protein (2) the vimentin filament was retracted from the cell edge to encircled the nucleus of the cell, and the virus NS1/E protein was convolently co distributed; the control group was in the control group. The endoplasmic reticulum was distributed uniformly in the cytoplasm, while the endoplasmic reticulum retracted in the DENV2 infection group was clustered at the perinuclear cycle, and was obviously co distributed with the virus NS1/NS3 protein. The morphology and distribution of the Golgi bodies did not change obviously. After infection, the 48h could be observed with the virus E protein, and the mitochondria in the form of 48h were changed from the tube reticulation after infection. The results suggest that the Golgi bodies may be related to the transport and maturation of the viral structural proteins, and the mitochondria may participate in the apoptosis process of the mitochondrial pathway caused by the virus, and they do not seem to be involved in the formation of the DENV2 virus factory. The wave protein fiber and endoplasmic reticulum may participate in the DENV 2 the formation of a virus factory in ECV304 cells.
The rearrangement of vimentin fibers induced by 2.DENV2 infection is closely related to vimentin Ser71 phosphorylation.
ROCK kinase can specifically phosphorylate the phosphorylation site Ser71 of vimentin head, leading to the rearrangement of vimentin fibers. Therefore, this experiment uses a monoclonal antibody that recognizes the Ser71 phosphorylation of vimentin. The distribution of Ser71 phosphorylated vimentin and viral protein after DENV2 infection is observed by cell immunofluorescence staining. The results showed that the distribution of Ser71 phosphorylated vimentin fiber was similar to the structure of vimentin rearrangement induced by DENV2 infection, and it coexisted with viral proteins. This suggests that the rearrangement of vimentin induced by DENV2 is closely related to the phosphorylation of vimentin Ser71. DENV2 infection may lead to vimentin Ser71 by activating ROCK kinase. Phosphorylation leads to the rearrangement of vimentin fibers.
3.DENV2 infection leads to rearrangement of vimentin fibers in ECV304 cells. Inhibition of ROCK kinase activity by Y-27632 can significantly inhibit the rearrangement of vimentin fibers.
The results of immunofluorescence staining showed that the morphology of vimentin fibers in each phase of the control group did not change significantly, and the cells from the nucleus to the cell edge were reticulate, while the reticular formation of vimentin fibers could be observed in the DENV2 infection group 30min after infection, and vimvil was retracted from the edge of the cell, and vimentin was found at 1h after infection. The fibers rearranged into the perinuclear region, gathered at the nucleus of the nucleus, and the vimentin fiber was surrounded by the nucleus after 8h infection. After 24h infection, the vimentin fiber existed together in the form of the two rearrangements, and the concentration distribution enhanced the local fluorescence intensity. The results suggested that the rearrangement of the fibrin fiber and DENV2 in the ECV304 cells. Infection in the medium is closely related to the cycle of replication.
ROCK kinase specific inhibitor Y-27632 was used to inhibit the activity of ROCK kinase, and the morphological changes of vimentin fiber were observed by immunofluorescence staining. The results showed that the vimentin fiber was rearranged in the control group only with DENV2, while the form of vimentin fiber at each time point in the Y-27632 drug treatment group remained the same. ROCK kinase plays an important role in the rearrangement of vimentin fiber induced by DENV2 infection, and the inhibition of ROCK kinase activity by drug can significantly inhibit the rearrangement of vimentin fiber induced by DENV2 infection.
4. DENV2 infection resulted in a significant increase in vimentin Ser71 phosphorylation level, and inhibition of ROCK kinase activity by Y-27632 significantly inhibited vimentin Ser71 phosphorylation.
In order to further study the role of vimentin Ser71 phosphorylation in DENV2 infection, this experiment uses a monoclonal antibody that recognizes Ser71 phosphorylation of vimentin, and uses Western blot to detect the changes in the expression of vimentin and the level of Ser71 phosphorylation in ECV304 cells after DENV2 infection. The results show that the waveform eggs of each phase point in the DENV2 infection process are shown. There was no significant difference in white expression, but the level of phosphorylation of Ser71 increased to 176.3% of the control group at 30min after infection, and the increase to 333.2% of the control group reached the peak value at 8h, and the trend of 12h decreased significantly, reaching 203.5% of the control group. The other time points were not significantly different from those in the control group. This result suggests that vimentin in the DENV2 infection process is a result of vimentin. The expression level was not affected, but the level of Ser71 phosphorylation was closely related to the infection and replication process of DENV2.
The infection experiment was carried out after the inhibition of ROCK kinase activity with the ROCK kinase specific inhibitor Y-27632. The changes in the phosphorylation level of vimentin Ser71 were detected with Western blot. The results showed that the level of Ser71 phosphorylated vimentin decreased significantly at each time point of Y-27632 drug treatment group compared with that of the control group only with DENV2, and 30min decreased after infection. Low to 51.42% of the control group, 1H decreased to 42.42%, 8h decreased to 54.01%, and the decrease to 46.76%. at 24h suggested that ROCK kinase played an important role in the replication of DENV2 infection. The use of drug continuous inhibition of ROCK kinase activity could significantly inhibit the Ser71 phosphorylation induced by DENV2 infection, thus inhibiting the onset of vimentin fibers. Rearrangement.
5. DENV2 infection leads to a significant increase in ROCK kinase activity.
In this experiment, the ROCK kinase activity detection kit was used to detect the activity level of ROCK kinase in the control group and the ECV304 cells of the general infection group, respectively. The results showed that the activity of ROCK kinase in 15min, 30min and 8h after infection was significantly higher than that of the control group, the 15min increased by 243.75%, and the 30min decreased to 177.19% when 30min, 8h. The level of ROCK kinase increased to 216.18% at the rest of the time and did not change significantly compared with the control group. This result suggested that the activity of ROCK kinase increased significantly in the process of DENV2 adsorption and penetration of ECV304 cells, and then returned to the initial level, while the critical time point 8h released from the virus was obviously increased again, and then decreased. Low to initial level.
To sum up, this experiment preliminarily determined that DENV2 infection leads to the rearrangement of vimentin fiber in ECV304 cells, and participates with the endoplasmic reticulum in the formation of the DENV2 virus factory. The activity of ROCK kinase in the process of virus infection is obviously increased, and the phosphorylation level of the corresponding vimentin Ser71 phosphorylation site is raised, and the use of drugs to inhibit ROCK excitation The enzyme activity could significantly inhibit the phosphorylation of vimentin Ser71 induced by DENV2 infection and the rearrangement of vimentin fiber. The results showed that DENV2 infection may activate ROCK kinase activity, induce vimentin phosphorylation and rearrangement, participate in the inference of the virus factory, and clarify the weight of vimentin fiber induced by ROCK kinase in DENV2 infection. The role of the platoon.

【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:R373

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張正治,劉正津,鐘世鎮(zhèn),王國(guó)英;滑膜細(xì)胞中波形蛋白的形態(tài)學(xué)研究[J];解剖學(xué)報(bào);1995年03期

2 林江凱,蔡文琴;反義及正義Vim重組逆轉(zhuǎn)錄病毒表達(dá)載體的構(gòu)建[J];華南國(guó)防醫(yī)學(xué)雜志;2005年01期

3 高潔,姜國(guó)鋒,石玉秀;大鼠牙胚成釉細(xì)胞中波形蛋白的免疫組化研究[J];中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志;2003年02期

4 閻錫蘊(yùn),S.Kühn,P.Traub;波形蛋白-核酸復(fù)合物誘導(dǎo)的多特異性單抗[J];中國(guó)科學(xué)B輯;1994年04期

5 徐浩翔;閆言;;波形蛋白表達(dá)和功能的研究進(jìn)展[J];北京大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2009年05期

6 劉靜;周莉;胡濤;;端腦腹側(cè)的膽堿能前體細(xì)胞的胚胎來源[J];徐州醫(yī)學(xué)院學(xué)報(bào);2010年07期

7 黃其林,趙士福,Gaudin Arnaud,Gascuel Jean;變形期非洲爪蛙嗅覺系統(tǒng)膠質(zhì)原纖維酸性蛋白和波形蛋白的時(shí)空表達(dá)[J];解剖學(xué)報(bào);2005年03期

8 周娟;張悅;陸海英;劉煜敏;;波形蛋白在實(shí)驗(yàn)性腎間質(zhì)纖維化上皮-間充質(zhì)轉(zhuǎn)分化中的表達(dá)及意義[J];中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志;2009年01期

9 金素芳;王自能;路妍妍;曹水良;蔣立艷;;大鼠卵泡膜中肌成纖維細(xì)胞的形成及意義[J];暨南大學(xué)學(xué)報(bào);2006年02期

10 王偉偉;張璐;馬曉春;高繼明;肖一紅;周恩民;;波形蛋白介導(dǎo)豬繁殖與呼吸綜合征病毒感染Marc-145細(xì)胞作用的初步研究[J];病毒學(xué)報(bào);2011年05期

相關(guān)會(huì)議論文 前10條

1 龍廷;秦達(dá)念;;MBP暴露下大鼠睪丸支持細(xì)胞波形蛋白的表達(dá)調(diào)控及其毒性意義的研究[A];中國(guó)生理學(xué)會(huì)消化內(nèi)分泌生殖代謝生理專業(yè)委員會(huì)2011年消化內(nèi)分泌生殖學(xué)術(shù)會(huì)議論文摘要匯編[C];2011年

2 盧一平;楊立;;波形蛋白、抗波形蛋白抗體、C4d在慢性移植物腎病中的表達(dá)和意義以及不同免疫抑制劑干預(yù)效應(yīng)的研究[A];第十五屆全國(guó)泌尿外科學(xué)術(shù)會(huì)議論文集[C];2008年

3 朱國(guó)棟;何輝;賀大林;;波形蛋白,細(xì)胞質(zhì)蛋白在人類胚胎前列腺發(fā)育不同階段的表達(dá)及意義[A];21世紀(jì)男科學(xué)——中華醫(yī)學(xué)會(huì)第五次全國(guó)男科學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年

4 徐浩翔;閆言;李莉;王寶璽;;UVB影響皮膚成纖維細(xì)胞α-tubulin、β-actin和波形蛋白的研究[A];中華醫(yī)學(xué)會(huì)第十五次全國(guó)皮膚性病學(xué)術(shù)會(huì)議論文集[C];2009年

5 成學(xué)琴;鮑華英;黃松明;張愛華;潘小勤;費(fèi)莉;陳榮華;;核心蛋白聚糖在腎小管間質(zhì)損害中的作用[A];第六屆江浙滬兒科學(xué)術(shù)會(huì)議暨兒科學(xué)基礎(chǔ)與臨床研究進(jìn)展學(xué)術(shù)班論文匯編[C];2009年

6 徐惠萍;齊文成;;抗突變型瓜氨酸波形蛋白抗體在類風(fēng)濕關(guān)節(jié)炎診斷中的研究[A];第十二屆全國(guó)風(fēng)濕病學(xué)學(xué)術(shù)會(huì)議論文集[C];2007年

7 夏永智;林江凱;馮華;;反義Vim逆轉(zhuǎn)錄病毒對(duì)損傷的星形膠質(zhì)細(xì)胞的作用[A];中國(guó)醫(yī)師協(xié)會(huì)神經(jīng)外科醫(yī)師分會(huì)第二屆全國(guó)代表大會(huì)論文匯編[C];2007年

8 陳建庭;陳旭瓊;金大地;瞿東濱;張忠民;楊春露;;特發(fā)性脊柱側(cè)凸患者椎旁肌結(jié)蛋白和波形蛋白的表達(dá)[A];第八屆全國(guó)脊柱脊髓損傷學(xué)術(shù)會(huì)議論文匯編[C];2007年

9 劉霞;賈汝琳;趙金霞;栗占國(guó);;抗突變型瓜氨酸化波形蛋白抗體在早期類風(fēng)濕關(guān)節(jié)炎中的診斷意義[A];全國(guó)臨床免疫檢驗(yàn)研討會(huì)暨第六屆全國(guó)臨床免疫學(xué)術(shù)會(huì)議論文匯編[C];2009年

10 袁紹祥;吳冬蘭;尚進(jìn);翟中和;;植物細(xì)胞中間纖維成分中含有波形蛋白(Vimentin)[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第五次會(huì)議論文摘要匯編[C];1992年

相關(guān)重要報(bào)紙文章 前10條

1 邢小萍;Rock流產(chǎn) Sun硬件壽終正寢?[N];網(wǎng)絡(luò)世界;2009年

2 朱;Rock悄然告別[N];電腦商報(bào);2009年

3 張永t;國(guó)內(nèi)首次對(duì)腎臟獨(dú)立類型腫瘤鑒別的探討與研究[N];中國(guó)中醫(yī)藥報(bào);2000年

4 本報(bào)記者 李紅;讓癱瘓的老鼠重新行走[N];科技日?qǐng)?bào);2003年

5 張永t;我國(guó)腎臟腫瘤鑒別研究出成果[N];中國(guó)醫(yī)藥報(bào);2000年

6 夏;軸突再生新希望 EGFR抑制劑[N];健康報(bào);2005年

7 記者 馮國(guó)梧;治療慢性粒細(xì)胞白血病有新方法[N];科技日?qǐng)?bào);2005年

8 張楓;非小細(xì)胞肺癌治療新藥獲批準(zhǔn)[N];中國(guó)醫(yī)藥報(bào);2004年

9 羅剛;創(chuàng)新:拜耳的主題詞[N];健康報(bào);2006年

10 湯宏;抗病毒免疫反應(yīng)調(diào)節(jié)機(jī)制有新發(fā)現(xiàn)[N];健康報(bào);2007年

相關(guān)博士學(xué)位論文 前10條

1 林江凱;波形蛋白在膠質(zhì)瘢痕形成中的作用[D];第三軍醫(yī)大學(xué);2001年

2 楊明;胰腺大部分切除誘導(dǎo)大鼠胰腺增生早期的蛋白質(zhì)組學(xué)研究[D];華中科技大學(xué);2006年

3 李祖茂;波形蛋白影響肝癌細(xì)胞惡性表型的實(shí)驗(yàn)研究[D];四川大學(xué);2007年

4 王繼紅;枸杞多糖對(duì)糖尿病大鼠血—視網(wǎng)膜屏障的保護(hù)作用及ROCK通路表達(dá)的機(jī)理研究[D];遼寧中醫(yī)藥大學(xué);2010年

5 周莉;在端腦發(fā)育中膽堿能神經(jīng)元發(fā)生機(jī)制的研究[D];吉林大學(xué);2009年

6 李曉江;RNA干擾ROCK-Ⅱ基因表達(dá)促進(jìn)脊髓損傷修復(fù)的實(shí)驗(yàn)研究[D];吉林大學(xué);2010年

7 徐丹;肺炎支原體感染相關(guān)致病機(jī)制及分子診斷研究[D];浙江大學(xué);2012年

8 陳華;Sa抗原相關(guān)蛋白質(zhì)的研究[D];中國(guó)協(xié)和醫(yī)科大學(xué);2006年

9 王曉明;ROCK信號(hào)轉(zhuǎn)導(dǎo)在大鼠慢性腦低灌注致認(rèn)知功能障礙中作用研究[D];吉林大學(xué);2009年

10 邱志群;鄰苯二甲酸二丁酯和苯并[a]芘對(duì)大鼠睪丸支持細(xì)胞的聯(lián)合毒性研究[D];第三軍醫(yī)大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 雷舜;ROCK激酶在Ⅱ型登革病毒感染誘導(dǎo)波形蛋白纖維重排中的作用研究[D];第三軍醫(yī)大學(xué);2012年

2 張曉玲;丙烯酰胺對(duì)小鼠睪丸細(xì)胞毒性作用及其與波形蛋白表達(dá)關(guān)系的研究[D];山西醫(yī)科大學(xué);2010年

3 林勇;波形蛋白的異常表達(dá)與胃癌侵襲轉(zhuǎn)移關(guān)系的初步研究[D];福建醫(yī)科大學(xué);2010年

4 石慧娟;胚胎皮膚Ⅰ、Ⅲ型膠原及波形蛋白表達(dá)與超微結(jié)構(gòu)變化的研究[D];瀘州醫(yī)學(xué)院;2010年

5 王偉偉;波形蛋白與PRRSV核衣殼蛋白及新型受體蛋白的關(guān)系[D];山東農(nóng)業(yè)大學(xué);2010年

6 葉迅;轉(zhuǎn)化生長(zhǎng)因子β1、波形蛋白和結(jié)蛋白在糖尿病大鼠腎組織中表達(dá)的研究[D];浙江大學(xué);2003年

7 張宇;波形蛋白在不同克隆起源的肝細(xì)胞癌中表達(dá)的研究[D];廣西醫(yī)科大學(xué);2010年

8 孫燕;O-2A祖細(xì)胞分化和兩型星形膠質(zhì)細(xì)胞抗原表達(dá)差異的研究[D];蘇州大學(xué);2003年

9 鄭華;成纖維細(xì)胞活化蛋白在口腔鱗狀細(xì)胞癌組織中的表達(dá)研究[D];四川大學(xué);2005年

10 劉琛;缺氧誘導(dǎo)因子-1α介導(dǎo)的ROCK通路活化在缺氧后血管內(nèi)皮高通透性發(fā)生中的作用[D];第三軍醫(yī)大學(xué);2010年

,

本文編號(hào):1896053

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/xiyixuelunwen/1896053.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶560a4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美韩日在线观看一区| 国产一区国产二区在线视频| 九九热在线免费在线观看| 午夜精品麻豆视频91| 久久一区内射污污内射亚洲| 在线免费视频你懂的观看| 91香蕉国产观看免费人人| 成人午夜视频在线播放| 欧美精品中文字幕亚洲| 国产又粗又硬又长又爽的剧情| 日韩人妻有码一区二区| 国内精品伊人久久久av高清 | 免费性欧美重口味黄色| 国产又黄又爽又粗视频在线| 亚洲欧洲精品一区二区三区 | 亚洲精品日韩欧美精品| 麻豆91成人国产在线观看| 久久精品久久久精品久久| 亚洲精选91福利在线观看 | 亚洲淫片一区二区三区| 久草视频这里只是精品| 一区二区三区在线不卡免费| 五月激情五月天综合网| 中文字幕亚洲精品乱码加勒比 | 亚洲国产成人久久一区二区三区| 欧美色欧美亚洲日在线| 欧美日韩国产亚洲三级理论片| 午夜精品久久久99热连载| 一本色道久久综合狠狠躁| 国产欧美日韩视频91| 在线观看视频日韩精品| 欧美日韩国产精品自在自线 | 国产精品一区二区成人在线| 丁香七月啪啪激情综合| 福利在线午夜绝顶三级| 99国产高清不卡视频| 国产欧美高清精品一区| 中文字幕乱码免费人妻av| 日韩人妻精品免费一区二区三区 | 一区二区三区精品人妻| 亚洲精品国产福利在线|