多媒體網(wǎng)絡(luò)輿情危機(jī)監(jiān)測指標(biāo)體系構(gòu)建研究
[Abstract]:With the development of 4G network and the popularity of mobile terminals, the way of public expression and expression of opinions is transferred from traditional information media to multimedia Internet platform, which promotes the dissemination of multimedia network public opinion information into the public view. Through app software, smart phone, various mobile terminals portable, the public quickly participate in Weibo, WeChat, forum and other media to carry network public opinion information. Compared with the traditional media such as newspapers and TV, multimedia network public opinion has the characteristics of rapid transmission, large amount of information, storage, management, analysis difficulties, high probability of public opinion crisis formation, wide range of influence, strong influence and so on. Once the public opinion crisis, the loss is incalculable. Relevant departments take the timely monitoring and analysis of multimedia network public opinion crisis as a prerequisite for guiding and unblocking public opinion crisis. The construction of index system is the foundation and basis of crisis monitoring. The purpose of this paper is to construct a multi-media network public opinion crisis monitoring index system. First of all, on the basis of studying the transmission process of multimedia network public opinion and analyzing the factors influencing the evolution of public opinion, this paper abstracts five elements (public opinion subject, public opinion object, public opinion ontology, public opinion medium) that cover the generation and development of public opinion. The environment of public opinion) is the first class index in the index system. At the same time, the index system of domestic and foreign literature and authoritative organizations is studied, the secondary index is established, and the final quantifiable index is given. The whole index system has strong objectivity and extensive representativeness. Secondly, in view of the huge amount of multimedia network public opinion information, this paper uses Hadoop big data processing platform, using clustering, classification, Association rules and other data mining technology for dynamic data acquisition, fast processing of images, text, video and other semi-structured, unstructured data, for multimedia network public opinion crisis real-time monitoring ideas; third, The method of combining correlation analysis and principal component analysis was used to screen the indicators. Firstly, the correlation analysis method is used to remove the index with large correlation coefficient in the same index set, to ensure that the remaining index system can represent the information of the initial index set and reduce the redundancy degree of the initial index set, then the principal component analysis method is used. Through the linear transformation, the residual index set is reduced, and the contribution rate of cumulative variance is used to verify that the redundancy of the final index system is low and the information representation ability is still very strong. BP neural network based on genetic algorithm is used to determine the weight of every index after screening, and the initial control parameters and public opinion crisis level are set by combining Delphi method and SPSS analysis. On the basis of reducing the impact of human subjective factors on the evaluation results, the importance of index system is mapped out in macro level, and the objectivity of determining index weights is shown in micro level. Taking the case model of "Korea sad" as an example, this paper verifies the rationality and necessity of the multi-media network public opinion crisis monitoring index system constructed in this paper.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:G206
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高歌;張藝煒;黃微;;多媒體網(wǎng)絡(luò)輿情演進(jìn)機(jī)理研究[J];圖書情報(bào)工作;2015年21期
2 黃微;李瑞;孟佳林;;大數(shù)據(jù)環(huán)境下多媒體網(wǎng)絡(luò)輿情傳播要素及運(yùn)行機(jī)理研究[J];圖書情報(bào)工作;2015年21期
3 周凱;朱一杰;龔松杰;李浩波;;互聯(lián)網(wǎng)環(huán)境下大數(shù)據(jù)多媒體信息檢索研究[J];科技資訊;2015年24期
4 曾潤喜;王君澤;杜洪濤;;新媒體時(shí)代網(wǎng)絡(luò)評(píng)論觀點(diǎn)信息發(fā)現(xiàn)機(jī)制研究[J];圖書情報(bào)工作;2015年14期
5 馬哲坤;涂艷;;國內(nèi)外網(wǎng)絡(luò)輿情研究熱點(diǎn)及演化趨勢(shì)分析[J];情報(bào)探索;2015年07期
6 王晰巍;邢云菲;趙丹;李嘉興;;基于社會(huì)網(wǎng)絡(luò)分析的移動(dòng)環(huán)境下網(wǎng)絡(luò)輿情信息傳播研究——以新浪微博“霧霾”話題為例[J];圖書情報(bào)工作;2015年07期
7 黃慶花;宋玉蓉;;基于優(yōu)先選擇和記憶效應(yīng)的觀點(diǎn)動(dòng)力學(xué)研究[J];計(jì)算機(jī)工程;2014年11期
8 唐濤;;基于大數(shù)據(jù)的網(wǎng)絡(luò)輿情分析方法研究[J];現(xiàn)代情報(bào);2014年03期
9 謝盼盼;;從網(wǎng)絡(luò)群體性事件看網(wǎng)絡(luò)意見領(lǐng)袖對(duì)輿情演變的影響[J];中國傳媒科技;2014年02期
10 尹亞輝;;大數(shù)據(jù)時(shí)代網(wǎng)絡(luò)輿情傳播形態(tài)與引導(dǎo)戰(zhàn)略[J];新聞知識(shí);2013年12期
相關(guān)重要報(bào)紙文章 前1條
1 高文;;多媒體大數(shù)據(jù)分析與搜索[N];中國信息化周報(bào);2015年
相關(guān)博士學(xué)位論文 前1條
1 陳曉美;網(wǎng)絡(luò)評(píng)論觀點(diǎn)知識(shí)發(fā)現(xiàn)研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 袁黎;大學(xué)生網(wǎng)絡(luò)輿情危機(jī)成因分析及化解策略研究[D];西南大學(xué);2015年
2 李力;新媒體時(shí)代的網(wǎng)絡(luò)輿情應(yīng)對(duì)研究[D];南昌大學(xué);2014年
3 馬梅;基于大數(shù)據(jù)的網(wǎng)絡(luò)輿情分析系統(tǒng)模型研究[D];西安電子科技大學(xué);2014年
4 呂靜;公共危機(jī)事件網(wǎng)絡(luò)輿情引導(dǎo)與監(jiān)管[D];浙江大學(xué);2014年
5 張釗銘;基于信息生態(tài)思想的網(wǎng)絡(luò)平臺(tái)運(yùn)行效率評(píng)價(jià)研究[D];吉林大學(xué);2014年
6 代芯瑜;基于網(wǎng)絡(luò)輿情演變規(guī)律的政府網(wǎng)絡(luò)輿情應(yīng)對(duì)策略研究[D];云南大學(xué);2014年
7 遲爽;網(wǎng)絡(luò)新聞傳播中多媒體信息呈現(xiàn)方式的傳播效果研究[D];東北師范大學(xué);2014年
8 呂一品;日常生活中的輿情及其演變規(guī)律研究[D];南京大學(xué);2014年
9 趙一靜;公安機(jī)關(guān)網(wǎng)絡(luò)輿情管理的問題與對(duì)策研究[D];吉林大學(xué);2014年
10 曹露;突發(fā)事件網(wǎng)絡(luò)輿情演變與政府引導(dǎo)研究[D];河北科技大學(xué);2013年
,本文編號(hào):2135872
本文鏈接:http://sikaile.net/xinwenchuanbolunwen/2135872.html