基于動態(tài)規(guī)劃的拉班舞譜自動生成研究
發(fā)布時間:2018-05-13 23:30
本文選題:拉班舞譜 + 運動捕捉。 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:拉班舞譜是一種公認(rèn)科學(xué)的動作分析和記錄體系,是現(xiàn)在最廣泛使用的動作譜,已經(jīng)可以達到五線譜之于音樂的作用,常用于不同舞蹈藝術(shù)的交流。但是記譜仍然需要專業(yè)人士人工識別記錄,十分耗時。運動捕捉是起源于20世紀(jì)動畫技術(shù)的概念,現(xiàn)代運動捕捉技術(shù)已經(jīng)相當(dāng)成熟,廣泛應(yīng)用于電影、動畫特效,可以達到十分逼真的效果,捕捉數(shù)據(jù)也日趨精確。但是設(shè)備成本居高不下。本次研究希望利用計算機識別動作,輸出拉班舞譜,將運動捕捉設(shè)備作為眼睛,分析捕捉數(shù)據(jù),獲得動作識別結(jié)果,從而提高拉班記譜效率,為我國民族民間動態(tài)藝術(shù)的保護提供一種途徑。本文介紹了一種基于動態(tài)規(guī)劃的拉班舞譜自動生成方法,通過分析BVH(Bio-vision Hierarchical)格式的運動捕捉數(shù)據(jù),識別各個基本動作,轉(zhuǎn)換成舞譜,實現(xiàn)了舞譜生成的平臺。首先通過一種被動式光學(xué)運動捕捉系統(tǒng)采集人體運動數(shù)據(jù),保存為BVH文件。分析數(shù)據(jù)定義的骨骼層次結(jié)構(gòu),將節(jié)點與人體關(guān)節(jié)語義對應(yīng)起來。然后將BVH格式的數(shù)據(jù)轉(zhuǎn)換成易用的位置坐標(biāo)數(shù)據(jù)以便后續(xù)分析。然后進行元素動作的分割分析,創(chuàng)新點在于在運動學(xué)分割的基礎(chǔ)上,加入了節(jié)拍信息,從而對分割結(jié)果做時間上的規(guī)整,減小了分割誤差,從而降低了分割不準(zhǔn)對動作分析識別的影響。動作識別的準(zhǔn)備上,由自主采集的數(shù)據(jù)對各個人體部位構(gòu)建了元素動作模板庫和元素動作樣本庫,最后采用動態(tài)時間規(guī)整的方法比較樣本和已知動作類別的模板,最后得知樣本動作類別,并在樣本庫上進行了識別正確率測試。拉班舞譜的輸出上,采用一種能夠?qū)?yīng)拉班舞譜符號的數(shù)據(jù)結(jié)構(gòu),將符號與運動捕捉數(shù)據(jù)序列對應(yīng)起來,從而能夠?qū)?shù)據(jù)轉(zhuǎn)換成舞譜。綜上,本文研究完成了一種由運動捕捉數(shù)據(jù)借助計算機分析識別自動生成拉班舞譜的系統(tǒng),并基于Python語言開發(fā)實現(xiàn)了系統(tǒng)平臺,生成的舞譜與專家給出的標(biāo)準(zhǔn)舞譜對比,能夠?qū)δ繕?biāo)的基本動作輸出正確。
[Abstract]:Laban dance spectrum is recognized as a scientific action analysis and recording system. It is the most widely used action spectrum. It can achieve the function of music. It is often used in the exchange of different dance arts. But notation still requires professionals to manually identify records, which are time-consuming. Motion capture is a concept originated in the 20th century animation technology. Modern motion capture technology has been quite mature, widely used in movies, animation effects, can achieve very realistic effects, capture data is increasingly accurate. But equipment costs are high. The purpose of this study is to use the computer to identify the movement, output the Laban dance spectrum, take the motion capture device as the eye, analyze and capture the data, obtain the result of motion recognition, and improve the efficiency of Laban recording. It provides a way for the protection of national folk dynamic art in our country. In this paper, a method of automatic generation of Laban dance spectrum based on dynamic programming is introduced. By analyzing the motion capture data of BVH(Bio-vision hierarchy format, every basic motion is recognized and converted into dance spectrum, and the platform of generating dance spectrum is realized. Firstly, a passive optical motion capture system is used to collect human motion data, which is saved as BVH file. The skeleton hierarchy defined by the data is analyzed to correspond the joint semantics of the node and the human body. The data in BVH format is then converted into easy-to-use position coordinate data for subsequent analysis. Then the element action segmentation analysis, the innovation is based on the kinematics segmentation, adding the beat information, thus the segmentation results to make the time regular, reduce the segmentation error, Thus, the influence of segmentation inaccuracy on motion analysis and recognition is reduced. In the preparation of action recognition, the element action template database and the element action sample database are constructed from the self-collected data. Finally, the dynamic time regularization method is used to compare the template of the sample with the known action category. Finally, the category of sample action is known, and the correct recognition rate is tested on the sample database. In the output of Laban dance spectrum, a kind of data structure which can correspond to Laban dance spectrum symbol is adopted, and the symbol and motion capture data sequence are corresponding, thus the data can be converted into dance spectrum. To sum up, this paper studies and completes a system of automatically generating Laban dance spectrum from motion capture data by means of computer analysis and identification. The system platform is developed based on Python language, and the generated dance spectrum is compared with the standard dance spectrum given by experts. Able to output correctly to the target's basic action.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:J721;TP391.41
【參考文獻】
相關(guān)期刊論文 前5條
1 汪成峰;陳洪;張瑞萱;朱德海;王慶;梅樹立;;帶有關(guān)節(jié)權(quán)重的DTW動作識別算法研究[J];圖學(xué)學(xué)報;2016年04期
2 汪力;葉樺;夏良正;;一種結(jié)合形狀序列和DTW的動作識別方法[J];數(shù)據(jù)采集與處理;2009年05期
3 朱登明;王兆其;;基于運動序列分割的運動捕獲數(shù)據(jù)關(guān)鍵幀提取[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2008年06期
4 楊躍東;王莉莉;郝愛民;封春升;;基于幾何特征的人體運動捕獲數(shù)據(jù)分割方法[J];系統(tǒng)仿真學(xué)報;2007年10期
5 沈軍行 ,孫守遷 ,潘云鶴;從運動捕獲數(shù)據(jù)中提取關(guān)鍵幀[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2004年05期
相關(guān)碩士學(xué)位論文 前1條
1 郭浩;基于人體運動捕捉數(shù)據(jù)自動生成拉班舞譜的研究[D];北京交通大學(xué);2015年
,本文編號:1885321
本文鏈接:http://sikaile.net/wenyilunwen/wdlw/1885321.html
最近更新
教材專著