不同植物人工濕地脫氮效果及微生物多樣性研究
本文選題:濕地 + 植物 ; 參考:《山東農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:濕地廣泛分布在世界各地,被喻為"地球之腎"。濕地是自然界最富生物多樣性和生態(tài)功能最高的生態(tài)系統(tǒng)。濕地為人類的生產(chǎn)、生活與休閑娛樂提供許多資源,是人類最重要的生存環(huán)境,也是人類最重要的環(huán)境資本之一。濕地在抵御與調(diào)節(jié)洪水、控制與降解污染物等方面具有舉足輕重的作用。濕地還是眾多野生動(dòng)植物、尤其是鳥類的棲息地。人工濕地是近些年發(fā)展起來的一種污水處理技術(shù)。它將污水處理與環(huán)境生態(tài)有機(jī)地結(jié)合起來,在有效處理污水的同時(shí)也能起到美化環(huán)境的作用。人工濕地可以創(chuàng)造生態(tài)景觀,也帶來環(huán)境效益及經(jīng)濟(jì)效益。自人工濕地發(fā)展以來,以其獨(dú)特的優(yōu)勢(shì)受到人們的廣泛關(guān)注,并廣泛應(yīng)用于治理生活污水、工業(yè)廢水和石油開采廢水等領(lǐng)域。由于生活污水直接排放到江河湖海中,導(dǎo)致受納水體發(fā)生水體富營(yíng)養(yǎng)化問題已經(jīng)成為當(dāng)今社會(huì)一個(gè)嚴(yán)峻的水環(huán)境問題,從水環(huán)境中高效脫氮已成為現(xiàn)今水環(huán)境領(lǐng)域的研究熱點(diǎn)(VymazalJ.,2002;DingYietal.,2012)。迄今,治理生活污水方法多樣,其中人工濕地因其運(yùn)行成本低廉,凈化效果較好,且具觀賞性而受到越來越多的人重視。人工濕地是通過基質(zhì)吸附、沉淀、轉(zhuǎn)化的途徑將廢水中的氮去除,從而降低水體富營(yíng)養(yǎng)化現(xiàn)象的發(fā)生。研究人工濕地對(duì)污水中氮去除的效果,可為提高人工濕地脫氮效率提供理論支持。本論文通過對(duì)泰安市泮河人工濕地區(qū)的調(diào)查,對(duì)不同植物濕地做了進(jìn)一步的研究,通過試驗(yàn)可以得出以下結(jié)論:(1)秋季濕地的污染物濃度基本低于冬季的污染物濃度。秋季對(duì)污染物的去除率基本均高于冬季污染物的去除率。對(duì)總氮去除率最高的植物是水菖蒲濕地,秋季去除率達(dá)49%,冬季可達(dá)37%,冬季香蒲濕地的去除效果最差,為16%,其它在200%~300%之間。秋季對(duì)氨氮(NH3-N)去除較好的植物濕地是再力花和水蔥濕地,去除效率分別為34.4%和32.6%,冬季對(duì)氨氮(NH3-N)去除較好的植物濕地是香蒲濕地,去除率達(dá)22%。秋季對(duì)硝態(tài)氮(NO3--N)去除較好的植物濕地是黃菖蒲、千屈菜濕地,去除率分別為76.7%、73.3%,其它濕地的去除效率在19%~37%之間;冬季對(duì)硝態(tài)氮(NO3--N)去除較好的植物濕地是水蔥濕地,去除效率為26.3%,且各濕地冬季對(duì)硝態(tài)氮(NO3--N)的去除效率基本一致。試驗(yàn)中各系統(tǒng)均有NO2--N檢出,但含量均較低,濃度均在0.1mg/L以下,變化范圍很小。(2)通過傳統(tǒng)培養(yǎng)方法測(cè)定3種微生物數(shù)量關(guān)系為氨化細(xì)菌反硝化細(xì)菌亞硝化細(xì)菌,秋季濕地系統(tǒng)的氨化細(xì)菌、亞硝化細(xì)菌、反硝化細(xì)菌數(shù)量基本均高于冬季。水蔥、水菖蒲、茭白、千屈菜濕地系統(tǒng)秋季氨化細(xì)菌數(shù)量顯著高于冬季,香蒲濕地系統(tǒng)冬季氨化細(xì)菌數(shù)量略高于秋季,黃菖蒲和再力花濕地系統(tǒng)秋冬季氨化細(xì)菌數(shù)量基本相同。除香蒲濕地外,其它濕地系統(tǒng)秋季亞硝化菌數(shù)量均顯著高于冬季。秋季,再力花濕地系統(tǒng)亞硝化細(xì)菌數(shù)量最高;冬季,香蒲濕地系統(tǒng)亞硝化細(xì)菌數(shù)量最高。除水菖蒲、再力花濕地系統(tǒng)外,其它濕地系統(tǒng)秋季反硝化菌數(shù)量均高于冬季。秋季,黃菖蒲濕地反硝化細(xì)菌數(shù)量最高;冬季,水蔥濕地反硝化細(xì)菌數(shù)量最高。各個(gè)植物濕地的亞硝化細(xì)菌數(shù)量與氨氮(NH3-N)的去除率之間呈現(xiàn)較好的相關(guān)性(秋季R=0.955,冬季R=0.991)。反硝化細(xì)菌數(shù)量與硝態(tài)氮(NO3--N)的去除率之間呈現(xiàn)較好的相關(guān)性。(3)秋冬季7個(gè)濕地單元14個(gè)樣品中的ACE、Chao1指數(shù)有所不同,但是差異并不大,秋季樣品的ACE、Chao1指數(shù)的最大值均出現(xiàn)在茭白濕地,冬季樣品的ACE、Chao1指數(shù)的最大值均出現(xiàn)在水菖蒲濕地,這與OTU數(shù)的變化趨勢(shì)是一致的。不同植物濕地的樣品主要細(xì)菌群落結(jié)構(gòu)存在差異,但差異不大。變形菌門(Proteobacteria)、綠彎菌門(Chloroflexi)、酸桿菌門(Acidobacteria)、擬桿菌門(Bacteroidetes)、放線菌門(Actinobacteria)、浮霉菌門(Planctomycetes)、藍(lán)細(xì)菌(Cyanobacteria)、芽單胞菌門(Gemmatimonadetes)、疣微菌門(Verrucomicrobia),分別占到細(xì)菌總量的38.2%、17.1%、11.2%、7.4%、5.5%、5.3%、4.3%、3.3%、1.4%,其中屬于變形菌門(Proteobacteria)、綠彎菌門(Chloroflexi)、酸桿菌門(Acidobacteria)、擬桿菌門(Bacteroidetes)的序列總和占了全部序列的73.9%,這些微生物是本試驗(yàn)中的優(yōu)勢(shì)菌群。在屬水平上優(yōu)勢(shì)菌群有Ramlibacter.3%~1.9%(0.8%)、硝化螺旋菌屬(Nitrospira)0.2%~1.8%(0.9%)、節(jié)桿菌屬(Arthrobacter)0.1%~2.9%(0.8%)、浮霉菌屬(Planctomyces)0.3%~1.3%(0.7%)、紅游動(dòng)菌屬(Rhodoplanes)0.2%~2.0%(0.7%)。本次試驗(yàn)中硝化細(xì)菌主要包括有硝化作用的節(jié)桿菌屬(Arthrobacter)和硝化螺菌屬(Nitrospira),在本次試驗(yàn)中豐度相對(duì)較高,并且本次試驗(yàn)中大多濕地單元秋季的節(jié)桿菌屬(Arthrobacter)豐度均高于冬季,不同樣品中NOB的豐度大多數(shù)高于AOB的豐度,在秋季表現(xiàn)的更為明顯。本次試驗(yàn)中的反硝化細(xì)菌主要包括假單胞菌屬(Pseudomonas)、硫桿菌(Thiobacillus)、生絲菌屬(Hyphomicrobium)、紅桿菌屬(Rhodobacter)、脫硫弧菌屬(Desulfovibrio)等。濕地中秋季有反硝化功能的菌屬所占比例均高于冬季。這與傳統(tǒng)培養(yǎng)方法測(cè)得的反硝化細(xì)菌的趨勢(shì)基本一致。
[Abstract]:Wetland is widely distributed all over the world and is called "the kidney of the earth". Wetland is the most abundant biological diversity and ecological function of nature. Wetland provides a lot of resources for human production, life and leisure and entertainment. It is the most important living environment of human beings and one of the most important environmental capital of human beings. Floodwaters play an important role in controlling and degrading pollutants. Wetlands are still a large number of wild animals and plants, especially the habitat of birds. Constructed wetlands are a kind of sewage treatment technology developed in recent years. It combines sewage treatment with environmental ecology, and can also be used in the effective treatment of sewage. The artificial wetland can create ecological landscape and bring environmental and economic benefits. Since the development of artificial wetland, it has been widely concerned with its unique advantages, and is widely used in the treatment of domestic sewage, industrial waste water and oil mining wastewater. The problem of eutrophication in water body has become a serious water environment problem in today's society. High efficiency denitrification from water environment has become a hot spot in the field of water environment (VymazalJ., 2002; DingYietal., 2012). So far, the methods of treating domestic sewage are varied, among which artificial wetland is low operating cost and purification efficiency. The artificial wetland is a way to remove the nitrogen in the wastewater by the way of substrate adsorption, precipitation and transformation, thus reducing the occurrence of eutrophication in the water body. The study of the effect of nitrogen removal in the artificial wetland can provide theoretical support for the removal efficiency of the artificial wetland. Through the investigation of the artificial wet area in pazan River in Tai'an, we have done further research on different plant wetlands. Through the experiment, we can draw the following conclusions: (1) the pollutant concentration in the autumn wetland is basically lower than the concentration of the winter pollutants. The removal rate of pollutants in autumn is higher than the removal rate of pollutants in winter. The highest removal rate of total nitrogen in the autumn is the highest. The plant is the wetland of Acorus calamus. The removal rate is 49% in autumn and 37% in winter. The removal effect of cattail wetland is the worst in winter, 16% in winter and 200% to 300% in winter. The removal efficiency of ammonia nitrogen (NH3-N) in autumn is re force flower and shallot wetland, the removal efficiency is 34.4% and 32.6% respectively, and the better wet plant wetness is removed to ammonia nitrogen (NH3-N) in winter. The removal rate of 22%. in autumn for nitrate nitrogen (NO3--N) removal is better than that of Huang Changpu. The removal efficiency of the wetland is 76.7%, 73.3%, and the removal efficiency of other wetlands is between 19% and 37%. The removal efficiency of nitrate nitrogen (NO3--N) in winter is 26.3%, and the removal efficiency is 26.3%. The efficiency of the removal of nitrate nitrogen (NO3--N) in the season is basically the same. All the systems in the experiment have NO2--N detection, but the content is low, the concentration is below 0.1mg/L and the range of change is small. (2) the relationship between the number of 3 microbes by traditional culture method is ammoniated bacteria denitrifying bacteria, ammoniated bacteria and nitrosation in the autumn wetland system The number of bacteria and denitrifying bacteria was basically higher than that in winter. The number of ammoniacal bacteria was significantly higher in autumn than in winter. The number of ammoniacal bacteria in the cattail wetland system was slightly higher than that in autumn in winter, and the number of ammoniacal bacteria in Huang Changpu and Zanli wetland system was basically the same in autumn and winter. The number of nitrosation bacteria in autumn was significantly higher than that in winter. In autumn, the number of nitrifying bacteria in the wetland system was the highest in the autumn. In winter, the number of nitrifying bacteria in the cattail wetland system was the highest. The number of denitrifying bacteria in the other wetland systems in autumn was higher than that in winter. In autumn, Huang Changpu wetland denitrifying bacteria in autumn. The number of denitrifying bacteria in spring onion wetland was the highest in winter. The number of nitrifying bacteria in each plant wetland and the removal rate of ammonia nitrogen (NH3-N) showed a good correlation (fall R=0.955, winter R=0.991). The number of denitrifying bacteria and the removal rate of nitrate nitrogen (NO3--N) showed a good correlation. (3) 7 wetland single in autumn and winter. The ACE, Chao1 index of the 14 yuan samples is different, but the difference is not big. The maximum value of ACE and Chao1 index in autumn samples all appear in the wetland of Zizania Zizania. The maximum value of ACE and Chao1 index in winter samples all appear in the wetland of Acorus calamus, which is the same as the trend of the OTU number. The main bacterial community structure of different plant wetland samples There are differences, but there are not much difference. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Cyanobacteria, Gemmatimonadetes, and verruca microbe (Verrucomicrobia), respectively. The total amount of bacteria was 38.2%, 17.1%, 11.2%, 7.4%, 5.5%, 5.3%, 4.3%, 3.3%, 1.4%, which belonged to the deformable bacteria gate (Proteobacteria), Chloroflexi, Acidobacteria, and Pseudomonas (Bacteroidetes), which accounted for 73.9% of the whole sequence. These microbes were the dominant bacteria in this experiment. The group has Ramlibacter.3% to 1.9% (0.8%), nitrification helix (Nitrospira) 0.2% ~ 1.8% (0.9%), Bacillus Arthrobacter (Arthrobacter) 0.1% to 2.9% (0.8%), floating fungi (Planctomyces) 0.3% ~ 1.3% (0.7%), red swimming bacteria (Rhodoplanes) 0.2% ~ 2% (0.7%). Nitrifying bacteria mainly include nitrifying bacillus Arthrobacter (Arthrobacter) in this test. The abundance of Nitrospira was relatively high in this test, and the abundance of Arthrobacter in autumn was higher in most of the wetland units than in winter, and most of the abundance of NOB in different samples was higher than that of AOB in the autumn. The denitrifying bacteria in this test included mainly false denitrifying bacteria. Monomonas (Pseudomonas), Thiobacillus (Thiobacillus), raw silk bacteria (Hyphomicrobium), erythrobacterium (Rhodobacter), and desulphurizing Vibrio (Desulfovibrio). The proportion of denitrifying bacteria in the wetland in autumn is higher than that in winter, which is basically consistent with the trend of denitrifying bacteria obtained from traditional culture methods.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X703
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何軍;韋慶敏;陳淵;;人工濕地污水處理技術(shù)及其發(fā)展應(yīng)用研究[J];黑龍江科技信息;2017年02期
2 丁怡;王瑋;王宇暉;宋新山;;水平潛流人工濕地的脫氮機(jī)理及其影響因素研究[J];工業(yè)水處理;2015年06期
3 曲朝輝;林陶;夏品華;張俊美;;黃土寨溝冬季底泥中氮素及微生物的分布[J];貴州農(nóng)業(yè)科學(xué);2014年11期
4 白曉龍;楊春和;顧衛(wèi)兵;鄒永平;唐曄;鄭沁沁;;不同植物人工濕地凈化模擬生活污水效果[J];江蘇農(nóng)業(yè)科學(xué);2014年04期
5 張松達(dá);魏文娟;俞寧;王先挺;郝虎林;;皎口生態(tài)濕地脫氮除磷的效果研究[J];浙江農(nóng)業(yè)科學(xué);2014年04期
6 呂濤;吳樹彪;柳明慧;鞠鑫鑫;常永江;陳理;董仁杰;;潮汐流及水平潛流人工濕地污水處理效果比較研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2013年08期
7 樓紅旗;樓凌云;;臨安市濕地植物資源及其園林應(yīng)用研究[J];浙江農(nóng)業(yè)科學(xué);2013年02期
8 劉明;黃磊;高旭;馬曉霞;杜剛;;潛流濕地中微生物對(duì)三峽庫(kù)區(qū)微污染水凈化效果的影響[J];湖泊科學(xué);2012年05期
9 奉小憂;宋永會(huì);曾清如;彭劍峰;劉雪瑜;RHEE Jae Seong;IAMCHATURAPATR Janjit;;不同植物人工濕地凈化效果及基質(zhì)微生物狀況差異分析[J];環(huán)境科學(xué)研究;2011年09期
10 趙慶節(jié);;種植不同植物的人工濕地土壤微生物群落研究[J];上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版);2011年03期
相關(guān)碩士學(xué)位論文 前6條
1 殷曉樂;季節(jié)性植物搭配強(qiáng)化人工濕地凈化污水效果及其作用機(jī)制研究[D];山東大學(xué);2016年
2 董文國(guó);人工濕地運(yùn)行參數(shù)優(yōu)化及凈化機(jī)理研究[D];山東師范大學(xué);2014年
3 王玉琳;多壁碳納米管對(duì)活性污泥系統(tǒng)污水處理效果及其細(xì)菌群落結(jié)構(gòu)的影響[D];北京化工大學(xué);2014年
4 彭戀;復(fù)合型人工濕地在不同季節(jié)對(duì)生活污水的處理及脫氮機(jī)理的研究[D];華中農(nóng)業(yè)大學(xué);2013年
5 宋丹;污染支流人工強(qiáng)化生態(tài)濾床實(shí)驗(yàn)研究[D];東北大學(xué);2011年
6 奉小憂;人工濕地植物的篩選及其治污效果試驗(yàn)研究[D];湖南農(nóng)業(yè)大學(xué);2010年
,本文編號(hào):1849146
本文鏈接:http://sikaile.net/wenyilunwen/huanjingshejilunwen/1849146.html