濱海重鹽堿區(qū)幾種水培植物的耐鹽堿性及其凈化氮磷效果的研究
本文關(guān)鍵詞:濱海重鹽堿區(qū)幾種水培植物的耐鹽堿性及其凈化氮磷效果的研究 出處:《中國海洋大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 濱海區(qū) 鹽堿脅迫 生態(tài)修復(fù) 水培植物 水質(zhì)凈化 氮 磷
【摘要】:濱海地區(qū)地理位置優(yōu)越,沿海城市與外界聯(lián)系緊密,大多為全國經(jīng)濟、政治、交通樞紐,經(jīng)濟發(fā)達且發(fā)展迅速。由于濱海地區(qū)生境中往往是鹽堿同時存在,并且多為鹽堿含量高的水體,植物除了應(yīng)對鹽脅迫,還要應(yīng)對由堿脅迫引起的高pH脅迫,加之各種明渠暗管中污水的排入導(dǎo)致該地區(qū)水體污染嚴重,植物生長條件惡劣,生存率低,導(dǎo)致大面積的鹽堿土壤荒蕪、水體景觀蕭條,嚴重影響濱海發(fā)達城市的生態(tài)景觀形象,阻礙其快速發(fā)展。因此,含鹽堿水體的治理成為亟待解決的問題。各種景觀效果好,生存能力強,對水體中氮磷等營養(yǎng)物質(zhì)有較好凈化作用的水生植物耐鹽堿性的研究,是含鹽堿水體生態(tài)修復(fù)最需要先解決的問題。鹽堿對植物造成的滲透脅迫、離子毒害等生理傷害的研究表明,鹽堿混合脅迫更能說明植物的真實耐鹽堿性。因此,鹽堿混合脅迫下植物生理變化的研究是植物耐鹽堿的綜合機理的基礎(chǔ),對含鹽堿水體的生態(tài)修復(fù)有重要的指導(dǎo)意義。本研究以蘆葦、香蒲、黑麥草、荻、黃菖蒲、蜀葵為植物材料,NaCl和Na2CO3、 NaHCO3模擬出不同的鹽度(0~20‰)和pH(7.0~9.0)的混合鹽堿脅迫,分別對種子和幼苗進行鹽堿脅迫處理,通過測定植物種子發(fā)芽率、幼苗脯氨酸含量等生理指標來研究植物的耐鹽堿性:將植物置于分別含鹽(0~15‰)、堿(pH 7.0~9.0)及氮磷的水體中,通過測定植物生理指標變化及氮磷等物質(zhì)含量變化來研究植物對水體的凈化作用。研究結(jié)果表明:1、黑麥草、蜀葵種子的耐鹽堿性:(1)堿脅迫對植物種子萌發(fā)的影響較鹽脅迫大,鹽堿脅迫的耦合作用對黑麥草、蜀葵種子萌發(fā)的影響更大。高鹽(20%o)、pH9.18時幾乎無種子萌發(fā)。(2)黑麥草種子在鹽堿脅迫下生命力較強,其發(fā)芽率、發(fā)芽勢較蜀葵高,即黑麥草種子耐鹽堿性強于蜀葵。2、蘆葦、香蒲、黃菖蒲、荻、黑麥草幼苗的耐鹽堿性:(1)蘆葦能耐受的鹽堿度分別為pH 8.13時鹽度小于15‰、pH 9.18時鹽度小于 10‰;荻能耐受的鹽堿度分別為pH 8.13時小于10‰的鹽度,pH 9.18時小于5℃的鹽度;香蒲能耐受的鹽堿度分別pH 8.13時鹽度小于10‰、pH 9.18時鹽度小于5‰;黃菖蒲能耐受的鹽堿度分別為pH 7.64時小于10.5‰的鹽度,pH8.71時小于3.5%o的鹽度;黑麥草能耐受的鹽堿度分別為pH 8.13時鹽度小于10‰、pH 9.18時鹽度小于5‰。(2)耐鹽堿性排序為:蘆葦香蒲荻黑麥草黃菖蒲。(3)這5種植物均可以作為修復(fù)鹽堿地、恢復(fù)當?shù)鼐坝^的備選植物。3、蘆葦、香蒲、黑麥草的對含鹽堿水質(zhì)凈化效果:(1)在含鹽堿、氮磷水體中,植物耐鹽堿性都有所降低。(2)在鹽堿脅迫下蘆葦對氨氮去除率比香蒲平均高2.7%,而鹽、堿脅迫下香蒲對硝氮的去除率平均比蘆葦高2.5%、0.1%;鹽脅迫下兩種植物對總氮去除效果相差不大,堿脅迫下香蒲去除總氮效率平均高于蘆葦8.2%;鹽脅迫香蒲凈化總磷效率平均高于蘆葦7.3%,而堿脅迫下,蘆葦對總磷的去除率平均高于香蒲1.4%。(3)黑麥草在堿脅迫下對氮磷的處理效率較鹽脅迫高。
[Abstract]:The geographical position is superior in coastal area, the coastal city in close contact with the outside world, mostly for the country's economic, political, transportation hub, developed economy and the rapid development of the coastal area. Habitat is often saline exist at the same time, and more for the high content of salt water plant, in addition to salt stress, but also with high pH caused by alkali stress stress, and discharged into the sewage pipe channel in the area of water pollution is serious, plant growth conditions, the survival rate is low, resulting in a large area of saline soil is barren, water landscape depression, seriously affecting the coastal developed city ecological landscape image, hinder its rapid development. Therefore, problems to be solved with salt treatment the water has become various. Good landscape effect, strong survival ability, has better purification effect on alkaline salt tolerance of aquatic plants on nitrogen and phosphorus in water is alkaline water containing nutrients The body of ecological restoration need to solve the problem. Permeability caused by salt stress on ion toxicity physiological damage showed that the salt alkaline mixed stress can explain the real plant salt tolerance. Therefore, study on the physiological changes of plants under salt alkaline mixed stress is the basis for comprehensive mechanism of plant salt tolerance, are important significance of ecological restoration of saline water containing. In this study, reed, Typha, ryegrass, Di, Huang Changpu, hollyhock as plant material NaCl and Na2CO3, NaHCO3 to simulate different salinity (0 to 20 per thousand) and pH (7 ~ 9) of the mixed salt stress, respectively on seeds and seedlings to salt stress treatment by measuring the seeds germination rate, seedling proline content and other physiological indicators of plant salt tolerant plants in salt respectively: (0 ~ 15 per thousand), alkali (pH 7 ~ 9) and nitrogen and phosphorus in water, through the determination of plant Change of physiological indexes and the nitrogen and phosphorus content to study the purification effect of plants on water. The results show that: 1, ryegrass, hollyhock seed salt alkaline tolerance: (1) effect of alkali stress on Seed Germination of salt stress, salt stress coupling effect of black wheat, effects of hollyhock seed germination more at high salt (20%o), pH9.18 almost no seed germination. (2) ryegrass seeds under saline alkali stress strong vitality, germination rate, germination potential is high: hollyhock ryegrass seed salt alkaline tolerance, strong in hollyhock.2, reed, Typha, Huang Changpu, Di, salt tolerance of ryegrass seedlings Reed: (1) the tolerance to salinity were pH 8.13 when the salinity is less than 15 per thousand, 9.18 pH when the salinity is less than 10 per thousand; Di tolerance to alkalinity of pH 8.13 when the salinity is less than 10 per thousand respectively, pH 9.18 is less than 5 DEG C salinity; cattail tolerance to salinity were pH 8.13 when the salinity is less than 10 per thousand, 9.18 pH when the salinity is less than 5 per thousand; irispseudacorus tolerance to salinity is 7.64 pH when the salinity is less than 10.5 per thousand respectively, pH8.71 less than 3.5%o of salinity tolerance to salinity; ryegrass were pH 8.13 when the salinity is less than 10 per thousand, 9.18 pH when the salinity is less than 5 per thousand. (2) salt alkaline sort: reed cattail reed ryegrass irispseudacorus. (3) the 5 plants can be used as repair of saline alkali soil, restoration of the local landscape alternative plants.3, reed, cattail, Ryegrass with saline water purification effect: (1) containing salt, nitrogen and phosphorus in water body plant, salt tolerance have been reduced. (2) under saline alkali stress than the average removal rate of reed cattail as high as 2.7%, and the ammonia nitrogen removal rate under salt and alkali stress on nitrate nitrogen than the cattail reed high 2.5%, 0.1%; two kinds of plants under Salt Stress on total nitrogen removal efficiency difference, alkali stress the total nitrogen removal under. The average efficiency is higher than that of reed 8.2%; salt stress was higher than that of total phosphorus purification efficiency of cattail reed 7.3%, and reed under alkali stress, the total phosphorus removal rate is higher than the average 1.4%. (3) in Typha ryegrass under alkaline stress treatment efficiency of nitrogen and phosphorus than high salt stress.
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X52;X173
【相似文獻】
相關(guān)期刊論文 前1條
1 晉學(xué)娟;翟衡;;不同鹽堿脅迫對紅地球/貝達嫁接苗生長及光合作用的影響[J];中外葡萄與葡萄酒;2012年03期
相關(guān)會議論文 前5條
1 李曉宇;穆春生;;鹽和堿脅迫對羊草生長發(fā)育和生理代謝的影響[A];第六屆中國植物逆境生理學(xué)與分子生物學(xué)學(xué)術(shù)研討會論文摘要匯編[C];2010年
2 石德成;顏紅;尹尚軍;盛艷敏;;對植物堿脅迫的初步認識[A];中國植物生理學(xué)會全國學(xué)術(shù)年會暨成立40周年慶祝大會學(xué)術(shù)論文摘要匯編[C];2003年
3 郭立泉;;鹽、堿脅迫對星星草體內(nèi)氮代謝的影響比較[A];2007中國植物生理學(xué)會全國學(xué)術(shù)會議論文摘要匯編[C];2007年
4 劉杰;;營養(yǎng)破壞是堿脅迫的主要致害因素之一[A];第六屆中國植物逆境生理學(xué)與分子生物學(xué)學(xué)術(shù)研討會論文摘要匯編[C];2010年
5 楊春武;石德成;;有機酸在水稻抗堿過程中的生理作用[A];2009年中國作物學(xué)會學(xué)術(shù)年會論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前6條
1 孟晨;小麥漸滲系山融4號根系堿脅迫響應(yīng)轉(zhuǎn)錄組及相關(guān)基因功能研究[D];山東大學(xué);2015年
2 王歡;堿脅迫下水稻氮代謝調(diào)節(jié)機制[D];東北師范大學(xué);2013年
3 葛瑛;野大豆堿脅迫轉(zhuǎn)錄譜與基因組整合分析[D];東北農(nóng)業(yè)大學(xué);2010年
4 牛陸;鹽、堿脅迫對大豆屬植物的結(jié)構(gòu)演化及生理特性的影響[D];東北師范大學(xué);2013年
5 趙海新;寒地水稻對堿脅迫的響應(yīng)及鑒定指標評價[D];沈陽農(nóng)業(yè)大學(xué);2012年
6 曹東慧;抗堿鹽生植物虎尾草和甜土植物棉花應(yīng)對各種鹽堿脅迫時DNA甲基化調(diào)節(jié)的研究[D];東北師范大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 李正詩;杜梨對堿脅迫的響應(yīng)[D];山西農(nóng)業(yè)大學(xué);2015年
2 張寧;堿脅迫下野生大豆葉片蛋白質(zhì)組的雙向電泳分析[D];東北農(nóng)業(yè)大學(xué);2015年
3 劉娜;外源褪黑素和一氧化氮及其互作對番茄幼苗堿脅迫緩解效應(yīng)的研究[D];山東農(nóng)業(yè)大學(xué);2015年
4 陳凱;棉花中堿誘導(dǎo)蛋白質(zhì)組的分析與鑒定[D];河南大學(xué);2015年
5 孫萍;濱海重鹽堿區(qū)幾種水培植物的耐鹽堿性及其凈化氮磷效果的研究[D];中國海洋大學(xué);2015年
6 王琳琳;松嫩草地羊草種子萌發(fā)期對溫度、鹽、堿脅迫及其協(xié)同效應(yīng)的響應(yīng)[D];東北師范大學(xué);2011年
7 高忠喜;外源一氧化氮緩解黃瓜幼苗堿脅迫機理的研究[D];山東農(nóng)業(yè)大學(xué);2013年
8 郭立泉;鹽、堿脅迫下星星草體內(nèi)有機酸積累比較[D];東北師范大學(xué);2005年
9 唐相亭;雪柳對堿脅迫的生長及生理響應(yīng)研究[D];吉林農(nóng)業(yè)大學(xué);2013年
,本文編號:1432338
本文鏈接:http://sikaile.net/wenyilunwen/huanjingshejilunwen/1432338.html