鐵對番茄幼苗生長的影響及其檸檬酸轉(zhuǎn)運(yùn)基因SlFRD3的克隆與分析
[Abstract]:Iron is an essential trace metal element involved in a series of life activities, such as respiration and photosynthesis, and it is very important for plants to play a normal physiological and metabolic function. Iron deficiency stress not only hinders plant growth, affects iron accumulation in grains, interferes with plant tolerance and adaptability to soil conditions, but also directly affects the iron nutrition level of human beings through the food chain. Understanding the iron metabolism balance in plants is the basis to solve the problem of iron deficiency in plants and solve the problem of planting. The problem of iron deficiency is also the key to improve iron nutrition of animals and humans.Tomato is an important vegetable crop widely cultivated all over the world.Therefore, the study of iron metabolism mechanism of tomato has become a hot topic in the plant field.The effects of different iron content nutrient solution on physiological and morphological indexes of tomato seedlings were studied. The results showed that the morphological and physiological indices of tomato seedlings were significantly different under different iron concentrations. Iron deficiency treatment (OmMEDTA-Fe) could significantly inhibit the growth of tomato seedlings, and the inhibition effect became more obvious with the increase of stress time; while iron deficiency treatment (200 mMEDTA-Fe) could significantly inhibit the growth of tomato seedlings compared with normal treatment (100 mMEDTA-Fe) and iron deficiency treatment (100 mMEDTA-Fe). In this study, the gene was cloned and identified by inquiring NCBI and designing specific primers according to the coding region of SlFRD3 gene. In this study, quantitative PCR was used to study the SlFRD in tomato roots, stems, leaves, flowers and fruits. The results showed that the expression of the gene in tomato root was the highest, followed by leaves, stems, mature fruits (38-40 days after anthesis), flowers, young fruits (8-10 days after anthesis), expanded fruits (28-30 days after anthesis), green fruits (18-20 days after anthesis); the expression of SlFRD3 in different parts of tomato was different under different iron concentrations with different treatment time. In roots, the expression of SlFRD3 gene increased with the increase of treatment time, which may be related to root growth. Compared with normal iron treatment, iron deficiency stress did not affect the expression of SlFRD3 gene, while iron stress promoted the expression of SlFRD3 gene in leaves. The expression of SlFRD3 gene increased within 8 hours after iron deficiency treatment, then decreased with the increase of iron deficiency treatment, increased slowly within 32 hours, decreased slowly from 32 hours to 72 hours, and increased again at 96 hours after iron deficiency treatment. The bioinformatics analysis of SlFRD3 protein showed that its molecular formula was C2613H4170N652 0703S21, its molecular weight was 566441D, its isoelectric point was 9.19, and it was a soluble protein; the signal-free peptide site, its stability coefficient was 29.38, it was a stable protein; the average hydrophilic coefficient was 0.652, there were 12 transmembrane domains, and it was a transmembrane protein. E (PF01554) (158-259,316-475) and a polysacc synt C (PF14667) (212-341) domain belong to the typical MATE family. The secondary structure of SlFRD3 protein was predicted to be 48.76% alpha-helix, 21.9%. The elongated chain, 8.95% beta-3-rotation, 20.38% random curl. Amino acid sequence alignment and evolutionary tree analysis revealed that tomato SlFRD3 and Panari were related to each other. The relative proteins of tomato, potato, pepper, tobacco, American flowering tobacco and pubescent tobacco are close, but they are far from the biological model crops such as rice and Arabidopsis. Amino acid sequence alignment is not a branch, suggesting that tomato SlFRD3 protein and Arabidopsis AtFRD3 protein, rice OsFRDL1 protein have been studied extensively. This study cloned a 1 831 BP promoter fragment of the SlFRD gene and constructed a PBl121-SlFRD3P fusion expression vector. Acting elements are located in the promoter region of the SlFRD3 gene. In addition to TATA-box, which can make transcription start accurately, and core promoter elements such as CAAT-box, which control the initiation frequency, there are also two stress-related elements involved in heat stress and stress resistance, and six hormone-related elements. They are involved in the reactions of jasmonic acid, ethylene, gibberellin and salicylic acid, as well as many tissue-specific elements, such as those involved in and regulating endosperm expression, and some of the largest activator-mediated activating elements, for further transformation to identify the subcellular localization of the SlFRD3 gene and the SlFRD3 group. It laid the foundation for the study of promoter regulation.
【學(xué)位授予單位】:沈陽農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S641.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋秀華,王秀峰,魏珉;基質(zhì)添加沸石對番茄幼苗營養(yǎng)狀況及生長的影響[J];山東農(nóng)業(yè)科學(xué);2004年02期
2 江農(nóng)旺;看苗相改進(jìn)番茄幼苗管理技術(shù)[J];當(dāng)代蔬菜;2004年09期
3 劉勛甲;;番茄幼苗碳水化合物與氮狀態(tài)對新根產(chǎn)生的影響[J];長江蔬菜;1989年04期
4 張建民,韓曉弟,王剛,梁奉軍;不同濃度的磁化水澆灌番茄幼苗生理指標(biāo)的研究[J];中國農(nóng)學(xué)通報;2002年03期
5 石英,徐晶宇,蔚變云,朱本忠,羅云波;鹽脅迫對番茄幼苗中乙烯信號轉(zhuǎn)導(dǎo)途徑一些基因表達(dá)的影響[J];農(nóng)業(yè)生物技術(shù)學(xué)報;2004年01期
6 宋秀華,王秀峰,臧金波,韓素芹;沸石添加對番茄幼苗素質(zhì)的影響[J];中國蔬菜;2004年03期
7 丁海東,萬延慧,齊乃敏,朱為民,邵耀椿;鎘和鋅對番茄幼苗抗氧化酶活性的影響[J];仲愷農(nóng)業(yè)技術(shù)學(xué)院學(xué)報;2004年02期
8 樊懷福,蔣衛(wèi)杰,郭世榮;低溫對番茄幼苗植株生長和葉片光合作用的影響[J];江蘇農(nóng)業(yè)科學(xué);2005年03期
9 趙國錦;張法琴;;優(yōu)康唑浸種對番茄幼苗生理特性的影響[J];安徽農(nóng)業(yè)科學(xué);2006年01期
10 王振龍;陳鳳玉;;S_(3307)浸種對番茄幼苗抗旱性的影響[J];北方園藝;2007年02期
相關(guān)會議論文 前10條
1 齊明芳;李天來;許濤;蔣青青;張嬌;;鈣對亞高溫逆境下番茄幼苗的調(diào)控作用[A];慶祝中國園藝學(xué)會創(chuàng)建80周年暨第11次全國會員代表大會論文摘要集[C];2009年
2 胡立盼;曹凱;鄒志榮;;不同強(qiáng)度遠(yuǎn)紅光和紅光對番茄幼苗節(jié)間生長的影響[A];2013中國園藝學(xué)會設(shè)施園藝分會學(xué)術(shù)年會·蔬菜優(yōu)質(zhì)安全生產(chǎn)技術(shù)研討會暨現(xiàn)場觀摩會論文摘要集[C];2013年
3 須暉;李天來;郭泳;陳偉之;楊麗娟;鄂文偉;;番茄幼苗體內(nèi)激素含量與畸形果發(fā)生的關(guān)系[A];中國園藝學(xué)會第四屆青年學(xué)術(shù)討論會論文集[C];2000年
4 路濤;劉玉鳳;李天來;;不同光強(qiáng)對番茄幼苗光合作用和葉綠素?zé)晒鈪?shù)的影響[A];中國園藝學(xué)會2013年學(xué)術(shù)年會論文摘要集[C];2013年
5 李建明;劉國英;;不同氮素形態(tài)對亞低溫下番茄幼苗光合特性、滲透調(diào)節(jié)物質(zhì)以及抗氧化酶活性的影響[A];2013中國園藝學(xué)會設(shè)施園藝分會學(xué)術(shù)年會·蔬菜優(yōu)質(zhì)安全生產(chǎn)技術(shù)研討會暨現(xiàn)場觀摩會論文摘要集[C];2013年
6 張曉飛;潘小兵;田永強(qiáng);高麗紅;;煉苗期基質(zhì)相對含水量對番茄幼苗貯運(yùn)特性的影響[A];2013中國園藝學(xué)會設(shè)施園藝分會學(xué)術(shù)年會·蔬菜優(yōu)質(zhì)安全生產(chǎn)技術(shù)研討會暨現(xiàn)場觀摩會論文摘要集[C];2013年
7 齊明芳;劉玉鳳;李天來;范永懷;張克敏;;鈣對亞高溫下番茄幼苗葉片光合作用的調(diào)控[A];中國園藝學(xué)會2010年學(xué)術(shù)年會論文摘要集[C];2010年
8 趙冰;王學(xué)文;郭仰東;;弱光和干旱逆境對番茄幼苗形態(tài)特征及生理生化的影響[A];中國園藝學(xué)會2011年學(xué)術(shù)年會論文摘要集[C];2011年
9 陳啟林;徐春和;;光敏素對番茄幼苗胚軸長度和花青素合成的控制[A];中國植物生理學(xué)會全國學(xué)術(shù)年會暨成立40周年慶祝大會學(xué)術(shù)論文摘要匯編[C];2003年
10 李天來;張振武;;番茄幼苗體內(nèi)的成分與子房心室形成的關(guān)系[A];中國園藝學(xué)會成立六十周年紀(jì)念暨第六屆年會論文集(Ⅱ蔬菜)[C];1989年
相關(guān)重要報紙文章 前5條
1 程伯瑛;番茄幼苗為什么會死[N];瓜果蔬菜報.農(nóng)業(yè)信息周刊;2005年
2 山西省農(nóng)科院蔬菜研究所 程伯瑛;怎樣避免番茄幼苗出現(xiàn)黑褐色病斑[N];瓜果蔬菜報.農(nóng)業(yè)信息周刊;2006年
3 青島農(nóng)業(yè)大學(xué)植物病蟲害研究防治中心 張立寧;番茄果籽粒外露咋回事[N];河北科技報;2008年
4 青島農(nóng)業(yè)大學(xué) 張立寧;番茄子粒外露的原因及防治[N];河北科技報;2012年
5 魏晉;番茄子粒外露應(yīng)如何防治[N];農(nóng)民日報;2012年
相關(guān)博士學(xué)位論文 前6條
1 宋永駿;多胺在番茄幼苗耐低溫脅迫中的調(diào)控作用[D];沈陽農(nóng)業(yè)大學(xué);2014年
2 崔麗榮;24-表油菜素內(nèi)酯緩解低溫弱光對設(shè)施番茄幼苗傷害的研究[D];西北農(nóng)林科技大學(xué);2016年
3 吳雪霞;外源一氧化氮對鹽脅迫下番茄幼苗生理特性影響的研究[D];南京農(nóng)業(yè)大學(xué);2007年
4 張毅;亞精胺對番茄幼苗鹽堿脅迫的緩解效應(yīng)及其調(diào)控機(jī)理[D];西北農(nóng)林科技大學(xué);2013年
5 李益清;弱光影響番茄光合特性的鈣素調(diào)控機(jī)理研究[D];沈陽農(nóng)業(yè)大學(xué);2011年
6 張春梅;外源亞精胺對干旱脅迫下番茄(Lycopersicon esculentum M.)幼苗的緩解效應(yīng)及機(jī)理研究[D];西北農(nóng)林科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 何曉玲;外源硒對NaCl脅迫下加工番茄幼苗光合碳同化的影響[D];石河子大學(xué);2015年
2 杜清潔;亞低溫和水分對番茄幼苗形態(tài)及生理特性的影響[D];西北農(nóng)林科技大學(xué);2015年
3 劉建龍;外源褪黑素對干旱脅迫下番茄抗氧化系統(tǒng)及產(chǎn)量和果實品質(zhì)的影響[D];西北農(nóng)林科技大學(xué);2015年
4 李換麗;硅對番茄幼苗抗鹽性的影響及機(jī)理初探[D];西北農(nóng)林科技大學(xué);2015年
5 尹婷;弱光對雙色木番茄幼苗生長及生理特性的影響[D];廣西大學(xué);2015年
6 侯麗麗;UV-B輻射對番茄幼苗素質(zhì)的影響[D];山東農(nóng)業(yè)大學(xué);2015年
7 李艷軍;番茄硫化氫合成酶基因OASTL/LCD的克隆及硫化氫介導(dǎo)一氧化氮誘導(dǎo)番茄幼苗側(cè)根發(fā)育研究[D];南京農(nóng)業(yè)大學(xué);2014年
8 楊小龍;LED光照及褪黑素引發(fā)對番茄幼苗光抑制的調(diào)節(jié)[D];沈陽農(nóng)業(yè)大學(xué);2016年
9 張冬野;外源水楊酸和氯化鈣對番茄抗旱性及差異基因表達(dá)的影響[D];東北農(nóng)業(yè)大學(xué);2016年
10 尹松松;外源ABA對番茄幼苗抗冷性影響的研究[D];東北農(nóng)業(yè)大學(xué);2016年
,本文編號:2183608
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2183608.html