天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

農(nóng)作物水量的智能分配與預(yù)測(cè)研究

發(fā)布時(shí)間:2018-07-29 17:25
【摘要】:在現(xiàn)代農(nóng)業(yè)的發(fā)展過程中,水資源分配不均,供需矛盾的問題日益加劇,如何發(fā)展節(jié)水型農(nóng)業(yè)是亟待解決的一個(gè)重要問題。除了采用成熟的微灌、噴灌、滴灌等相對(duì)先進(jìn)的灌溉措施之外,在實(shí)際的農(nóng)業(yè)生產(chǎn)過程中,應(yīng)該實(shí)施合理有效的灌溉制度,以農(nóng)作物實(shí)際需水量為依據(jù),通過對(duì)大量相關(guān)數(shù)據(jù)的分析,應(yīng)用先進(jìn)的技術(shù)實(shí)施精確灌溉,以此來提高灌溉的效率,提高水的利用率。如何在現(xiàn)有水資源的基礎(chǔ)上,合理有效地進(jìn)行農(nóng)作物的灌溉具有十分重要的現(xiàn)實(shí)意義。智能灌溉以大量的數(shù)據(jù)分析為基礎(chǔ),改變了以往水資源灌溉過程中的盲目性和隨意性,能夠使管理成本不斷降低,使得經(jīng)濟(jì)效益明顯提高。本論文結(jié)合農(nóng)業(yè)物聯(lián)網(wǎng)的實(shí)際背景,以不同農(nóng)作物水資源的優(yōu)化調(diào)度和預(yù)測(cè)為基礎(chǔ),主要開展了以下工作:(1)針對(duì)傳統(tǒng)免疫優(yōu)化算法存在的不足,通過加入局部搜索算子,改進(jìn)了傳統(tǒng)的免疫優(yōu)化算法;同時(shí),為了加快種群迭代的速度,防止算法在迭代過程中可能會(huì)錯(cuò)過最優(yōu)抗體解的情況,將初始種群分成了兩個(gè)子種群進(jìn)行并行搜索,在一定程度上加快了種群搜索的速度。(2)基于實(shí)際農(nóng)田中的玉米和小麥不同生長(zhǎng)周期的情況,在水資源供給充足的情況下,驗(yàn)證了上述改進(jìn)的免疫優(yōu)化算法相比于原免疫優(yōu)化算法的優(yōu)勢(shì)。同時(shí)在非充分灌溉的條件下,通過改進(jìn)的免疫優(yōu)化算法,協(xié)調(diào)了兩種農(nóng)作物不同生長(zhǎng)周期的水量分配,使得兩種農(nóng)作物的總產(chǎn)量達(dá)到最大。(3)針對(duì)農(nóng)田灌溉過程中水資源分配不合理和浪費(fèi)的現(xiàn)狀,結(jié)合上海市農(nóng)委官網(wǎng)提供的數(shù)據(jù),以最小二乘支持向量機(jī)為基礎(chǔ),對(duì)于傳統(tǒng)的以經(jīng)驗(yàn)數(shù)據(jù)來選擇支持向量機(jī)的兩個(gè)重要的參數(shù)C和?,可能存在預(yù)測(cè)不夠準(zhǔn)確的情況,本文將改進(jìn)后的粒子群算法和免疫優(yōu)化算法分別應(yīng)用到最小二乘支持向量機(jī)的參數(shù)優(yōu)化中,形成新的支持向量機(jī)模型。(4)以實(shí)際采集到的農(nóng)業(yè)數(shù)據(jù)為基礎(chǔ),將上述的支持向量機(jī)模型運(yùn)用在實(shí)際農(nóng)作物的水量預(yù)測(cè)中,通過影響農(nóng)作物需水量的各種因素之間的相互作用,達(dá)到預(yù)測(cè)農(nóng)作物在某一時(shí)刻的需水量的目的。通過比較兩種智能算法,驗(yàn)證了本文提出的改進(jìn)的免疫優(yōu)化算法和改進(jìn)后的粒子群算法在參數(shù)優(yōu)化方面的作用,同時(shí)證明了提出的改進(jìn)的免疫優(yōu)化算法比粒子群算法的優(yōu)勢(shì),這些可以為后續(xù)農(nóng)作物的節(jié)水灌溉提供一定的理論指導(dǎo)。最后總結(jié)了全文的內(nèi)容并對(duì)未來可以研究的內(nèi)容進(jìn)行了展望。
[Abstract]:In the course of the development of modern agriculture, the distribution of water resources is uneven and the contradiction between supply and demand is becoming more and more serious. How to develop water-saving agriculture is an important problem to be solved urgently. In addition to adopting relatively advanced irrigation measures such as mature micro-irrigation, sprinkler irrigation and drip irrigation, a reasonable and effective irrigation system should be implemented in the actual agricultural production process, based on the actual water demand of crops. Through the analysis of a large number of related data, the advanced technology is applied to carry out accurate irrigation, so as to improve the efficiency of irrigation and the utilization rate of water. How to reasonably and effectively irrigate crops on the basis of existing water resources is of great practical significance. Based on a large amount of data analysis, intelligent irrigation has changed the blindness and arbitrariness in the process of irrigation of water resources in the past, which can reduce the management cost and increase the economic benefit. Based on the practical background of the agricultural Internet of things and the optimal scheduling and forecasting of different crop water resources, this paper mainly carried out the following work: (1) aiming at the shortcomings of the traditional immune optimization algorithm, by adding the local search operator, The traditional immune optimization algorithm is improved, and in order to speed up the population iteration and prevent the algorithm from missing the optimal antibody solution in the iterative process, the initial population is divided into two sub-populations for parallel search. (2) based on the different growth cycles of corn and wheat in real farmland, when the water supply is sufficient, The advantages of the improved immune optimization algorithm compared with the original immune optimization algorithm are verified. At the same time, under the condition of inadequate irrigation, through the improved immune optimization algorithm, the water allocation of two crops with different growth cycles is coordinated. The total yield of the two crops is maximized. (3) in view of the unreasonable and wasteful distribution of water resources in the process of irrigation, combining with the data provided by the official website of Shanghai Agricultural Commission, the least square support vector machine is used as the basis. For the traditional selection of two important parameters C and C of support vector machine based on empirical data, the prediction may not be accurate enough. In this paper, the improved particle swarm optimization algorithm and the immune optimization algorithm are applied to the parameter optimization of the least squares support vector machine, and a new support vector machine model is formed. (4) based on the agricultural data collected, The support vector machine (SVM) model is used to predict the water demand of crops at a certain time through the interaction of various factors affecting crop water demand. By comparing two kinds of intelligent algorithms, the function of the improved immune optimization algorithm and the improved particle swarm optimization algorithm in parameter optimization is verified. At the same time, the advantage of the improved immune optimization algorithm is proved to be better than that of the particle swarm optimization algorithm. These can provide certain theoretical guidance for the subsequent crop water-saving irrigation. Finally, the content of the paper is summarized and the future research content is prospected.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S27;TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前1條

1 王瓊;任偉建;;基于免疫算法的優(yōu)化問題[J];東北林業(yè)大學(xué)學(xué)報(bào);2008年08期

相關(guān)會(huì)議論文 前10條

1 許殿;史小衛(wèi);;基于免疫算法的微波電路優(yōu)化技術(shù)[A];2003'全國(guó)微波毫米波會(huì)議論文集[C];2003年

2 王玉峰;張建強(qiáng);沈喜明;;矩形平面稀疏陣列的免疫算法優(yōu)化[A];2007年全國(guó)微波毫米波會(huì)議論文集(下冊(cè))[C];2007年

3 鄭日榮;毛宗源;譚洪舟;;基于歐氏距離和精英交叉的免疫算法參數(shù)研究[A];第二十四屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2005年

4 王瑋;占榮輝;張軍;;基于免疫算法的距離像長(zhǎng)度估計(jì)[A];第十四屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2009)論文集[C];2009年

5 王濤波;;基于免疫算法的通航機(jī)場(chǎng)初步布局研究[A];2013年中國(guó)通用航空發(fā)展論壇論文集[C];2013年

6 孟科;李紹軍;錢鋒;;實(shí)數(shù)編碼免疫算法在溶劑脫水塔軟測(cè)量中的應(yīng)用[A];'2006系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2006年

7 余志剛;盧文秀;褚福磊;;基于P型有限元和免疫算法的梁裂紋識(shí)別方法[A];2008年全國(guó)振動(dòng)工程及應(yīng)用學(xué)術(shù)會(huì)議暨第十一屆全國(guó)設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2008年

8 魏杰;李鐵克;;基于隨機(jī)性參數(shù)混合免疫算法的工藝車間調(diào)度研究[A];第十一屆全國(guó)自動(dòng)化應(yīng)用技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2006年

9 顧軍華;周瑞英;李娜娜;譚慶;;一種基于免疫和Hopfield神經(jīng)網(wǎng)絡(luò)的多峰值優(yōu)化算法[A];全國(guó)第十屆企業(yè)信息化與工業(yè)工程學(xué)術(shù)年會(huì)論文集[C];2006年

10 龔濤;杜常興;;免疫計(jì)算研究的進(jìn)展[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)A卷[C];2011年

相關(guān)博士學(xué)位論文 前10條

1 呂崗;免疫算法及其應(yīng)用研究[D];中國(guó)礦業(yè)大學(xué)(北京);2003年

2 王輝;可變模糊匹配陰性選擇免疫算法研究[D];哈爾濱工程大學(xué);2008年

3 葛紅;免疫算法及核聚類人工免疫網(wǎng)絡(luò)應(yīng)用研究[D];華南理工大學(xué);2003年

4 鄭日榮;基于歐氏距離和精英交叉的免疫算法研究[D];華南理工大學(xué);2004年

5 虞正亮;多組分重疊信號(hào)解析算法與應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年

6 葉蓮;基于免疫算法的分類方法及其應(yīng)用研究[D];重慶大學(xué);2012年

7 李運(yùn)江;基于免疫算法的音樂廳形體優(yōu)化[D];華南理工大學(xué);2014年

8 孫凱;基于免疫算法與分散搜索的鋼鐵生產(chǎn)調(diào)度研究[D];上海交通大學(xué);2009年

9 武曦;免疫算法輔助GC-MS對(duì)多組分樣品重疊信號(hào)的快速分析方法研究[D];南開大學(xué);2014年

10 王曉睿;隧道軟弱圍巖大變形監(jiān)控及免疫智能反分析[D];華中科技大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 薛敏;基于量子免疫算法的三自由度直升機(jī)的研究[D];河北工業(yè)大學(xué);2015年

2 王永興;免疫算法在逆變器控制中的應(yīng)用研究[D];南京航空航天大學(xué);2015年

3 凌娟;基于混合免疫算法的TD-LTE網(wǎng)絡(luò)基站選址優(yōu)化研究[D];杭州電子科技大學(xué);2015年

4 張寶亮;基于多目標(biāo)的乘務(wù)員排班問題的研究[D];中國(guó)民航大學(xué);2010年

5 鮑磊;農(nóng)作物水量的智能分配與預(yù)測(cè)研究[D];東華大學(xué);2017年

6 計(jì)金玲;免疫算法在航班延誤快速恢復(fù)中應(yīng)用研究[D];中國(guó)民航大學(xué);2008年

7 劉亞超;基于免疫算法的拆卸序列規(guī)劃方法研究[D];電子科技大學(xué);2011年

8 王海莉;混合免疫算法及其應(yīng)用研究[D];西北大學(xué);2005年

9 徐建偉;基于免疫算法的城市干線交通信號(hào)協(xié)調(diào)控制研究[D];湘潭大學(xué);2008年

10 杭海梅;免疫算法及其在自適應(yīng)濾波器中的應(yīng)用[D];蘇州大學(xué);2010年

,

本文編號(hào):2153443

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2153443.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3b2d7***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com