高異黃酮轉(zhuǎn)基因大豆新品系的創(chuàng)制與鑒定
[Abstract]:Soybean is not only a self-pollinating crop but also an important cash crop in China. It contains abundant protein and unsaturated fatty acids and has important nutritional value. With the improvement of people's living standard, the quality of soybean is required higher. Soybean isoflavone is a secondary metabolite of soybean flavonoid metabolism pathway, which plays an important role in delaying senescence, improving menopausal symptoms, preventing osteoporosis, preventing cancer and anticancer, reducing heart disease, cardiovascular and cerebrovascular diseases, etc. Has been widely used in medical care, health care and other aspects. At present, the market is in short supply, and breeding soybean varieties with high isoflavone content is an effective way to solve this problem. On the basis of traditional soybean hybridization method, the method of direct pollination without male removal was used to carry out hybridization, and the survival rate of hybrid pods and pseudo-hybrids after direct pollination were compared. The results showed that the survival rate of hybrid pods without direct pollination was significantly higher than that of soybean without direct pollination, but there was no significant difference in the production rate of pseudo hybrids. At the same time, the mother did not go to male than to save time and effort, simple and easy, more suitable for large-scale promotion. The content of isoflavone synthase gene (IFS), chalcone isomerase (CHI) and MYB12B2 transcription factor in soybean grain was determined by high performance liquid chromatography (HPLC). The results showed that the contents of total isoflavones in the seeds of the transgenic materials in the higher generation were significantly higher than those in the transgenic recipient varieties and the inheritance of isoflavones was stable. In order to further improve the content of isoflavones in transgenic soybean lines, a direct pollination method was used to improve the content of isoflavones in transgenic soybean lines. The overexpression plants of IFS gene were hybridized with the over expression of MYB12B2 transcriptional factors and the overexpression lines of IFSX Chi, respectively. The F1 plants were obtained, and the leaves of Basta were smeared with the bar gene test strip by PCR detection technique. The F1 plants carrying the target gene were identified by combining the agronomic characters in the field. The content of isoflavones in F _ 2 generation of F _ 2 hybrids with the over-expression of IFSI Chi gene and Ji soybean 5 was determined. The results showed that the content of isoflavones could be increased between the over-expressed plants and the hybrids of Ji Soybean 5. The effect of CHI gene overexpression on improving the total isoflavone content of Ji soybean 5 was better than that of IFS gene overexpression. The content of isoflavones in F _ 2 hybrids of MYB12B2 transgenic plants and IFSS-CHI overexpression plants were detected. The results showed that the content of isoflavones in F2 generation of the over-expressed plants of MYB12B2 and IFSG-CHI gene was higher than that of their parents. The content of isoflavones in hybrid T (MYB12B2) x T (IFS) was higher than that in MYB12B2) x T (CHI) (hybrid T), and the content of isoflavone in hybrid T (MYB12B2) x T (CHI) was higher than that in hybrid T (MYB12B2) x T (CHI).
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S565.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Yu Liu;Yuliang Sun;Wenfei Zhu;Jiabin Yu;;Comments to “Mechanism of hamstring muscle strain injury in sprinting”by Yu et al.[J];Journal of Sport and Health Science;2017年02期
2 李允菲;孫宇涵;李云;;植物單倍體育種及其在林木育種中的應(yīng)用[J];世界林業(yè)研究;2016年01期
3 楊宏霞;劉冰雁;劉振坤;鹿艷新;王雪;曲柏宏;申永杰;;‘蘋果梨’果實(shí)著色過程中PyCHI和PyF3H的克隆與表達(dá)分析[J];果樹學(xué)報(bào);2015年03期
4 王志彬;申晚霞;朱世平;薛楊;趙曉春;;柑橘CHS基因序列多態(tài)性及表達(dá)水平對類黃酮生物合成的影響[J];園藝學(xué)報(bào);2015年03期
5 黃大f ;;我國轉(zhuǎn)基因作物育種發(fā)展回顧與思考[J];生物工程學(xué)報(bào);2015年06期
6 趙妍;林鋒;顏素雅;汪虹;陳明杰;;高效草菇分子標(biāo)記輔助雜交育種方法的建立與應(yīng)用[J];微生物學(xué)通報(bào);2015年06期
7 鄭潔;趙其陽;張耀海;焦必寧;;超高效液相色譜法同時測定柑橘中主要酚酸和類黃酮物質(zhì)[J];中國農(nóng)業(yè)科學(xué);2014年23期
8 董彥琪;劉喜存;王文英;;瓜類作物離體雄核發(fā)育和離體雌核發(fā)育單倍體育種技術(shù)研究進(jìn)展[J];中國瓜菜;2014年S1期
9 熊杰;錢蜀;謝永洪;謝振偉;李海霞;;高效液相色譜-串聯(lián)質(zhì)譜法同時測定水中丙烯酰胺、苯胺和聯(lián)苯胺[J];分析化學(xué);2014年01期
10 王丹;包額爾敦嘎;高麗輝;張建華;趙鳳奎;;單倍體育種技術(shù)在玉米種質(zhì)改良中的應(yīng)用[J];遼寧農(nóng)業(yè)科學(xué);2013年04期
相關(guān)博士學(xué)位論文 前7條
1 王妙;GmBRI1和GmCPD基因的克隆及在大豆開花過程中的功能研究[D];吉林大學(xué);2015年
2 彭霄鵬;楊樹木質(zhì)素合成基因C3H與HCT表達(dá)下調(diào)對細(xì)胞壁組成與結(jié)構(gòu)的影響[D];北京林業(yè)大學(xué);2015年
3 亓希武;桑樹花青素生物合成相關(guān)基因的鑒定及功能研究[D];西南大學(xué);2014年
4 曹士亮;BcWRKYⅡ基因?qū)τ衩椎霓D(zhuǎn)化及提高玉米抗逆性研究[D];東北農(nóng)業(yè)大學(xué);2013年
5 余克琴;甜橙果實(shí)發(fā)育與成熟過程中轉(zhuǎn)錄組變化及CsASR基因的功能分析[D];華中農(nóng)業(yè)大學(xué);2012年
6 邵景俠;植物轉(zhuǎn)錄因子基因OsHOX12、OsHOX14和ABS2的克隆及功能研究[D];西北農(nóng)林科技大學(xué);2012年
7 楊超;大豆植株再生和遺傳轉(zhuǎn)化技術(shù)體系的研究[D];南京農(nóng)業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 侯鵬;大豆PAL基因家族時空表達(dá)及PAL2-1基因?qū)Ξ慄S酮含量調(diào)控的研究[D];東北農(nóng)業(yè)大學(xué);2016年
2 劉德泉;大豆異黃酮相關(guān)基因的表達(dá)分析及GmbHLH3a基因的功能鑒定[D];吉林大學(xué);2015年
3 滕巍;大豆胚尖遺傳轉(zhuǎn)化體系的優(yōu)化及MYB轉(zhuǎn)錄因子轉(zhuǎn)基因大豆的鑒定[D];吉林大學(xué);2015年
4 陳明明;Chi/Rip雙價(jià)基因?qū)Υ蠖沟倪z傳轉(zhuǎn)化及轉(zhuǎn)基因株系的培育[D];東北農(nóng)業(yè)大學(xué);2014年
5 陶永煥;甜櫻桃內(nèi)參基因驗(yàn)證與MADS-Box基因的克隆及表達(dá)分析[D];河南農(nóng)業(yè)大學(xué);2014年
6 劉羽;大豆BCCP基因家族、花生CHI基因家族表達(dá)及進(jìn)化分析[D];山東師范大學(xué);2014年
7 王旭;蘋果梨果實(shí)PAL和CHS基因克隆與分析及PAL基因植物表達(dá)載體的構(gòu)建[D];延邊大學(xué);2013年
8 蘇連泰;大豆MYB轉(zhuǎn)錄因子GmMYBJ1和GmMYBJ2的克隆與功能分析[D];吉林大學(xué);2013年
9 張麗群;茶樹CHS家族基因gDNA克隆、基因表達(dá)及與多酚含量的關(guān)系分析[D];中國農(nóng)業(yè)科學(xué)院;2013年
10 田芳;大豆異黃酮浸種對栽培大豆和野生大豆耐旱性的生理調(diào)控效應(yīng)[D];南京農(nóng)業(yè)大學(xué);2013年
,本文編號:2143392
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2143392.html