天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于高精度數(shù)據(jù)庫和3D模型的福建省土壤有機碳儲量估算研究

發(fā)布時間:2018-07-20 21:45
【摘要】:精確估算土壤有機碳儲量對農(nóng)業(yè)管理措施的制定和全球碳循環(huán)的模擬具有重要意義。本研究選擇亞熱帶地區(qū)地形地貌比較復(fù)雜的福建省為研究對象,以1982年第二次土壤普查各個縣(市)土壤圖和《土種志》中記錄的土壤剖面所建立的1:5萬尺度高精度土壤數(shù)據(jù)庫,以及該地區(qū)1:25萬數(shù)字高程模型(DEM)為基礎(chǔ),分析目前常用的2D模型(二維平面面積)和考慮地形因素的3D模型(三維表面面積)估算該地區(qū)土壤有機碳儲量的差異,并用后者定量化前者的誤差大小,結(jié)果可為我國土壤有機碳儲量的準(zhǔn)確估算提供理論依據(jù)。主要研究結(jié)果如下:(1)基于2D與3D模型兩種方法估算的福建省土壤總面積分別為:12.08 × 10~4 km~2和 12.68 × 10~4 km~2;2D 模型估算的表層(0~20 cm)和剖面(0~100 cm)土壤有機碳密度分別為4.57 kg·m~2和11.55 kg·m~2,3D模型分別為4.59kg·m~(-2)和11.59kg·m~(-2),高于全國平均水平(2.97 kg.m~(-2)和9.13 kg.m~(-2));2D模型估算的表層和剖面土壤有機碳儲量分別為552 Tg和1396 Tg,3D模型分別為582 Tg和1470 Tg,分別占全國表層和剖面土壤有機碳總儲量(27.40 Pg和84.40 Pg)的2.01%和 1.66%、2.12%和 1.74%。(2)從不同土壤類型來看,基于2D與3D模型的估算結(jié)果中表層和剖面土壤均以山地草甸土有機碳密度最高,分別為7.75 kg·m~2和 29.07kg.m~(-2)、7.74kg.m~(-2)和 29.16kg.m~(-2);風(fēng)砂土有機碳密度最低,分別為 0.94 kg·m~(-2) 和 2.17 kg·m~(-2)、0.94 kg·m~(-2) 和 2.17 kg·m~(-2)。從不同行政區(qū)來看,基于2D與3D模型的估算結(jié)果中龍巖市表層土壤有機碳密度最高,分別為5.44 kg·m~(-2)和5.45 kg·m~(-2),南平市剖面土壤有機碳密度最高,分別為15.05 kg·m~2和15.09 kg·m~(-2);廈門市表層和剖面土壤有機碳密度均最低,分別為3.03 kg·m~(-2)和7.84kg·m~(-2)、3.05 kg.m~(-2)和7.86 kg·m~(-2)。從不同地貌類型來看,基于2D與3D模型的估算結(jié)果中均以山地表層和剖面土壤有機碳密度最高,分別為5.28 kg.m~(-2)和 12.85kg·m~(-2)、5.29kg·m~(-2) 和 12.89kg·m~(-2);平原表層和剖面土壤有機碳密度最低,分別為 2.87kg·m~(-2)和 8.21kg·m~(-2)、2.87kg·m~(-2)和 8.21 kg·m~(-2)。(3)從總體空間分布來看,福建省表層和剖面土壤有機碳密度空間分布趨勢均為沿海地區(qū)低,內(nèi)陸地區(qū)高,特別是北部、東北部和西部地區(qū)較高。表層土壤有機碳密度主要集中在2.5~5 kg·m~(-2)范圍內(nèi),分布面積占全省土壤總面積的45.27%;剖面土壤有機碳密度主要在5~15 kg.m~(-2)范圍內(nèi),分布面積占全省土壤總面積的60.35%。此外,表層和剖面土壤有機碳密度總體隨海拔上升而增加,但在坡度40°以下,有機碳密度隨坡度上升而緩慢下降,坡度40°以上,有機碳密度先上升后下降。(4)以目前常用的2D模型估算結(jié)果為基準(zhǔn),基于考慮地形因素的3D模型所估算表層和剖面土壤平均有機碳密度相對偏差分別為0.34%和0.31%,有機碳總儲量相對偏差分別為5.30%和5.26%。從不同土壤類型來看,山地草甸土土類和黃壤性土亞類的表層和剖面土壤有機碳儲量相對偏差最大,分別達(dá)到8.84%和9.27%、9.59%和9.69%;濱海鹽土土類和咸酸水稻土亞類的表層和剖面土壤有機碳儲量相對偏差最小,僅為0.14%和0.14%。從不同行政區(qū)來看,南平市和寧德市表層和剖面土壤有機碳儲量相對偏差最大,分別為5.95%和5.90%、5.94%和5.92%;廈門市表層和剖面土壤機碳儲量相對偏差最小,分別為3.24%和2.82%。從不同地貌類型來看,山地的表層和剖面土壤有機碳儲量相對偏差最大,達(dá)到6.54%和6.65%;平原的表層和剖面土壤有機碳儲量相對偏差最小,分別為1.58%和1.49%。從不同坡度級別來看,當(dāng)坡度大于20°時,土壤分布面積和有機碳儲量的差異比較顯著,相對偏差均大于10%,此時,采用2D模型的估算結(jié)果會遠(yuǎn)遠(yuǎn)低于3D模型,產(chǎn)生較大誤差。
[Abstract]:The accurate estimation of soil organic carbon reserves is of great significance to the formulation of agricultural management measures and the simulation of global carbon cycle. This study selected the Fujian Province, which was complex in topographic and geomorphology in the subtropical region, as the research object, with the soil map of each county (city) in the second Soil Census in 1982 and the 1:5 of the soil profile recorded in the soil ethnography. The high precision soil database and the 1:25 million digital elevation model (DEM) in this area are based on the analysis of the current 2D model (two-dimensional surface area) and the 3D model considering terrain factors (3D surface area) to estimate the difference of soil organic carbon reserves in this area, and use the latter to quantify the error size of the former, and the results can be used as our country. The theoretical basis for accurate estimation of soil organic carbon reserves is provided. The main results are as follows: (1) the total soil area of Fujian Province Based on two methods based on 2D and 3D models is 12.08 * 10~4 km~2 and 12.68 x 10~4 km~2 respectively; the soil organic carbon density of the surface (0~20 cm) and the section (0~100 cm) of the 2D model is 4.57 kg. M~2, respectively. The 11.55 kg / m~2,3D models are 4.59kg / m~ (-2) and 11.59kg m~ (-2), which are higher than the national average (2.97 kg.m~ (-2) and 9.13 kg.m~ (-2)), and the soil organic carbon reserves of the surface and section soils are 552 and 1396 respectively. The models are 582 and 1470 respectively, respectively, which account for the total soil organic carbon reserves in the surface and section of the country (27.40) respectively. And 84.40 Pg) 2.01% and 1.66%, 2.12%, and 1.74%. (2) from different soil types, based on the 2D and 3D models, the soil organic carbon density is the highest in the surface and section soil, which are 7.75 kg. M~2 and 29.07kg.m~ (-2), 7.74kg.m~ (-2) and 29.16kg.m~ (-2), and the lowest density of the organic carbon in the aeolian sandy soil, 0.94 respectively. M~ (-2) and 2.17 kg. M~ (-2), 0.94 kg. M~ (-2) and 2.17 kg m~ (-2). From the different administrative regions, the soil organic carbon density in the surface soil of Longyan is the highest in the estimated results based on the 2D and the model. The soil organic carbon density in the Nanping section is the highest, which is 15.05 and 15.09. The soil organic carbon density in the surface and section of the market was the lowest, which were 3.03 kg. M~ (-2) and 7.84kg. M~ (-2), 3.05 kg.m~ (-2) and 7.86 kg m~ (-2). ~ (-2) and 12.89kg m~ (-2); the soil organic carbon density in the surface and section of the plain is the lowest, 2.87kg. M~ (-2) and 8.21kg. M~ (-2), 2.87kg m~ and 8.21. (3) from the overall spatial distribution, the spatial distribution trend of soil organic carbon density in the surface and section of Fujian province is low in the coastal area, high in the inland area, especially in the north. The density of soil organic carbon in the surface soil is mainly concentrated in the range of 2.5 ~ 5 kg. M~ (-2), which accounts for 45.27% of the total soil area in the province. The density of soil organic carbon in the profile is mainly in the range of 5~15 kg.m~ (-2), and the distribution area is 60.35%. of the total soil area of the whole province, and the soil organic carbon density in the surface and section soil. The total increased with the elevation, but below 40 degrees, the density of organic carbon decreased slowly with the gradient, and the slope was above 40 degrees. The density of organic carbon first increased and then declined. (4) the estimated results of the current 2D model were based on the current commonly used model, and the average organic carbon density of the surface and section soil based on the 3D model considering topographic factors was relatively biased. The difference is 0.34% and 0.31% respectively. The relative deviation of the total organic carbon reserves is 5.30% and 5.26%., respectively, from the different soil types. The relative deviation of the soil organic carbon reserves in the soil and yellow soil subclasses of the mountain meadow and the yellow soil subclass is the largest, reaching 8.84% and 9.27%, 9.59% and 9.69%, respectively, and the surface layer of the coastal saline soil and the saline acid paddy soil subclass. The relative deviation of soil organic carbon reserves is the smallest, only 0.14% and 0.14%. from different administrative areas, the relative deviation of the soil organic carbon reserves in the surface and section of Nanping and Ningde is the largest, 5.95% and 5.90%, 5.94% and 5.92%, respectively, and the relative deviation of the carbon reserves in the surface and section of Xiamen is the lowest, 3.24% and 2.82%., respectively. In the same geomorphic type, the relative deviation of the soil organic carbon reserves in the surface and section of the mountain area is the largest, reaching 6.54% and 6.65%. The relative deviation of the soil organic carbon reserves in the surface and section of the plain is the smallest. The difference between the soil distribution area and the organic carbon reserves is more obvious when the gradient is more than 20 degrees, respectively, 1.58% and 1.49%.. The relative deviation is greater than 10%. At this time, the estimation result of 2D model is much lower than that of 3D model, which leads to large errors.
【學(xué)位授予單位】:福建農(nóng)林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S153.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 何清;陳楠;;聯(lián)合頻域信息的福建省山地形態(tài)分類[J];遙感信息;2016年03期

2 巢清塵;張永香;高翔;王謀;;巴黎協(xié)定——全球氣候治理的新起點[J];氣候變化研究進(jìn)展;2016年01期

3 王海平;陳志峰;許標(biāo)文;曾玉榮;;福建省糧食安全及其評價研究[J];福建農(nóng)業(yè)學(xué)報;2015年12期

4 趙本嘉;黃錦學(xué);李偉;邱曦;劉志江;林成芳;施友文;;福建中亞熱帶闊葉林土壤有機碳礦化的溫度敏感性及其影響因素[J];亞熱帶資源與環(huán)境學(xué)報;2015年04期

5 周恒;田福平;路遠(yuǎn);胡宇;時永杰;;草地土壤有機碳儲量影響因素研究進(jìn)展[J];中國農(nóng)學(xué)通報;2015年23期

6 李曉迪;王淑民;張黎明;于東升;史學(xué)正;李加加;邢世和;王光翔;;土壤數(shù)據(jù)源和制圖比例尺對旱地土壤有機碳儲量估算的影響[J];土壤學(xué)報;2016年01期

7 薛樹強;黨亞民;秘金鐘;劉紀(jì)平;董春;吳波;王世進(jìn);;顧及非線性地形因子的地表面積計算[J];測繪學(xué)報;2015年03期

8 龍軍;張黎明;沈金泉;周碧青;毛艷玲;邱龍霞;邢世和;;復(fù)雜地貌類型區(qū)耕地土壤有機質(zhì)空間插值方法研究[J];土壤學(xué)報;2014年06期

9 陳曦;;廣西土壤有機碳儲量估算及與全國部分省區(qū)的比較研究[J];地理科學(xué);2014年10期

10 張志霞;許明祥;師晨迪;邱宇潔;;黃土丘陵區(qū)不同地貌單元土壤有機碳空間變異的尺度效應(yīng)[J];自然資源學(xué)報;2014年07期

相關(guān)博士學(xué)位論文 前3條

1 楊柯;我國典型農(nóng)耕區(qū)土壤固碳潛力研究[D];中國地質(zhì)大學(xué)(北京);2016年

2 支俊俊;浙江省土壤有機碳估算及其尺度效應(yīng)研究[D];浙江大學(xué);2014年

3 苗正紅;1980-2010年三江平原土壤有機碳儲量動態(tài)變化[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2013年

相關(guān)碩士學(xué)位論文 前5條

1 李加加;蘇北旱地土壤有機碳估算的尺度效應(yīng)研究[D];福建農(nóng)林大學(xué);2013年

2 陳吉;基于GPS的土地面積測繪技術(shù)及土地管理信息系統(tǒng)的研究[D];浙江大學(xué);2013年

3 趙莉敏;太湖地區(qū)水稻土有機碳空間分異及其影響因素的研究[D];南京農(nóng)業(yè)大學(xué);2008年

4 郭廣芬;未來氣候變化對我國土壤有機碳儲藏的影響[D];中國氣象科學(xué)研究院;2006年

5 劉暢;長白山北坡森林土壤有機質(zhì)的累積過程及其影響因子[D];東北林業(yè)大學(xué);2004年



本文編號:2134886

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2134886.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6dffa***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com