天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于PID控制的電液耕深調(diào)節(jié)系統(tǒng)研究

發(fā)布時間:2018-07-14 07:37
【摘要】:耕作過程中保持耕深穩(wěn)定是提高耕作質(zhì)量的重要措施之一。目前耕作機械作業(yè)過程中耕深調(diào)節(jié)大多為力調(diào)節(jié)或位調(diào)節(jié)方式,其對耕深的控制效果較差,而且耕深測量也只能通過在耕后測量溝底到未耕地表的距離來實現(xiàn),這種測量方式誤差較大,且無法實時反饋耕深信息給機手,使機手無法根據(jù)耕作效果來實時調(diào)節(jié)耕深。隨著耕作機械朝著自動化、智能化方向的發(fā)展,以及電控、液壓等技術的逐漸成熟,實現(xiàn)耕深的自動調(diào)節(jié)已經(jīng)成為一種發(fā)展趨勢。為提高耕作機械作業(yè)過程中的耕作穩(wěn)定性,本文研制了一種耕深自動調(diào)節(jié)系統(tǒng),主要研究內(nèi)容如下:以某款耕耘機的后懸掛旋耕部件為研究對象,設計了機電液一體化耕深控制系統(tǒng),利用電控和液壓技術實現(xiàn)對耕深的自動控制,同時加入PID控制算法優(yōu)化控制效果。與傳統(tǒng)的耕深調(diào)節(jié)方式相比,本系統(tǒng)采用雙傾角傳感器檢測耕深,通過耕深設定電位器設定耕深,控制芯片采集目標耕深信號和傳感器實時反饋信號,通過比較產(chǎn)生誤差信號,誤差信號經(jīng)控制器計算處理后變?yōu)榭刂菩盘?控制電磁比例換向閥換向和開口大小,實現(xiàn)對液壓系統(tǒng)的控制,從而達到控制耕深的目的。其中,電控系統(tǒng)采用AT89S52作為處理芯片,在硬件結構上設計了相應的模塊電路,同時結合傾角傳感器和執(zhí)行閥進行接口電路設計,實現(xiàn)了信號采集和閥控PWM信號的輸出。軟件系統(tǒng)基于C語言開發(fā),主要編寫了主程序、采集程序、IIC通信程序、PWM輸出程序等,其功能為接收耕深設定電位器和傾角傳感器的實時信號,通過轉(zhuǎn)換運算之后有選擇的輸出PWM波,其經(jīng)過RC濾波處理后轉(zhuǎn)換成模擬信號以控制電液比例換向閥的動作。在液壓系統(tǒng)設計部分,根據(jù)耕耘機耕深調(diào)節(jié)的工作要求,設計了耕深調(diào)節(jié)液壓系統(tǒng)及液壓驅(qū)動旋耕回路;計算了旋耕部件作業(yè)的功率,根據(jù)功率匹配對液壓系統(tǒng)進行了設計,確定工作壓力為16MPa,油泵型號為PFE-31036,液壓馬達型號為1JMD-40,在此基礎上完成了液壓系統(tǒng)各個元器件和液壓管道的設計和選用。耕深調(diào)節(jié)過程中控制系統(tǒng)的動態(tài)響應對耕深調(diào)節(jié)的即時性有重要影響,為研究電液控制系統(tǒng)動態(tài)響應特性,本文利用Simulink中的Sim Hydraulic模塊對耕深控制系統(tǒng)進行動態(tài)仿真研究,搭建了閉環(huán)電液控制系統(tǒng)模型,根據(jù)各個元器件和模塊的參數(shù)對仿真系統(tǒng)模型進行參數(shù)設定,對系統(tǒng)進行分工況仿真。仿真工況分為調(diào)節(jié)耕耘機耕深從0增加到100mm,和從175mm減小到100mm兩個工況,用輸入階躍信號的方式表示設定耕深的動作,用SIMHydraulic中傳感器模型來代替實際傳感器檢測相關數(shù)據(jù),用阻尼模塊代替懸臂給液壓桿的反作用力,用摩擦力模塊表示液壓缸動作時活塞與缸體以及活塞桿與缸蓋的摩擦力,液阻、機械慣性等其他影響因素在仿真模型中用相應的適當?shù)哪K表示。仿真結果顯示,耕深控制系統(tǒng)存在約13%的耕深超調(diào)量,同時系統(tǒng)需要5.0s左右的振蕩時間才能控制耕深達到穩(wěn)態(tài)。為消除耕深超調(diào)現(xiàn)象,縮短調(diào)節(jié)耕深達到穩(wěn)態(tài)所需的時間,本文采用在誤差信號處理中使用積分分離PID控制算法的方法對耕深控制系統(tǒng)的動態(tài)響應特性進行優(yōu)化。設定積分閾值為ε=0.08,當誤差值較大時取消積分作用,加快調(diào)整速度,在耕深值迫近目標值時再加上積分作用,提高控制精度。采用經(jīng)驗試湊法整定PID參數(shù),當Kp=0.08,Ki=1.2,Kd=0.001時,系統(tǒng)具有較好的動態(tài)響應,與未加入PID控制算法的仿真結果比較,幾乎消除了系統(tǒng)的耕深超調(diào)現(xiàn)象,同時,將響應時間縮短到1.4s左右,使耕深控制系統(tǒng)的動態(tài)響應達到較好的效果。在此基礎上,對耕耘機進行了耕深穩(wěn)定性驗證試驗,耕耘機在10cm和16cm的預設耕深條件下作業(yè)時,耕深穩(wěn)定性變異系數(shù)分別為6.05%和3.54%,達到了旋耕作業(yè)規(guī)定的農(nóng)藝要求。
[Abstract]:Keeping the depth of tillage stability is one of the most important measures to improve the quality of Tillage in the process of tillage. At present, the cultivation depth regulation is mostly force regulation or position regulation, and its control effect on tillage depth is poor, and the depth measurement of tillage can only be realized by measuring the distance from the bottom to the untillage surface after the tillage. It has large error and can not feed back the deep information to the machine hand in real time, so that the hand can not adjust the depth of Tillage in real time according to the tillage effect. With the development of the farming machinery towards automation, the development of the direction of intelligence, and the gradual maturity of the electronic control and hydraulic technology, the automatic regulation of the depth of the tillage has become a trend of development. In this paper, a kind of automatic regulation system for tillage depth is developed in this paper. The main research contents are as follows: Based on the research object of the rear suspending rotary tillage part of a cultivator, the electromechanical hydraulic integrated tillage control system is designed. The automatic control of the depth of ploughing is realized by the electronic control and hydraulic technology, and the PID control algorithm is added to the control algorithm to optimize the control. Compared with the traditional tillage depth regulation mode, the system uses the dual tilt angle sensor to detect the depth of the tillage, set the tillage depth of the potentiometer through the depth of the tillage, and control the chip to collect the target ploughing depth signal and the real-time feedback signal of the sensor. The error signal is generated by comparison, and the error signal becomes the control signal after the controller calculation and processing, and the control electricity is controlled. The changing direction and opening size of the magnetic proportional directional valve realize the control of the hydraulic system, thus achieving the purpose of controlling the depth of the tillage. In the electronic control system, the AT89S52 is used as the processing chip, the corresponding module circuit is designed on the hardware structure, and the interface circuit is designed with the inclination sensor and the execution valve, and the signal acquisition and valve control are realized. The output of the PWM signal. The software system is developed based on the C language. The main program, the acquisition program, the IIC communication program and the PWM output program are mainly written. The function of the software system is to receive the real-time signal of the potentiometer and the tilt sensor for receiving the depth of the tillage. After the conversion operation, the selected output PWM wave has been converted to the analog signal after the RC filter processing. In the design part of the hydraulic system, the hydraulic system and the hydraulic driven rotary tillage loop are designed according to the working requirements of the cultivation depth regulation. The power of the working of the rotary tillage parts is calculated and the power matching hydraulic system is designed. The working pressure is 16MPa and the model of the oil pump is PFE-3 1036, the model of the hydraulic motor is 1JMD-40. On this basis, the design and selection of the components and the hydraulic pipes of the hydraulic system are completed. The dynamic response of the control system has an important influence on the immediacy of the ploughing depth regulation. In order to study the dynamic response characteristics of the electro-hydraulic control system, this paper uses the Sim Hydraulic model in the Simulink. The closed loop electro-hydraulic control system model is built by the dynamic simulation of the block to the tillage depth control system. According to the parameters of each component and module, the parameters of the simulation system are set, and the simulation system is simulated. The simulation conditions are divided into two conditions, which are to adjust the plough depth from 0 to 100mm, and to decrease from 175mm to 100mm. The input step signal means the action of setting up the depth of the tillage, using the sensor model in the SIMHydraulic to replace the actual sensor to detect the relevant data. The damping module is used to replace the reaction force of the cantilever to the hydraulic rod. The friction force, the hydraulic resistance and the mechanical inertia of the piston and the cylinder body, the piston rod and the cylinder head are expressed by the friction module. The simulation results show that the tillage depth control system has about 13% deep overshoot in the tillage control system, and the system needs about 5.0s oscillation time to control the tillage depth to reach the steady state. In the error signal processing, the integral separation PID control algorithm is used to optimize the dynamic response characteristics of the tillage depth control system. The integral threshold is set to be epsilon =0.08. When the error value is large, the integral action is cancelled and the adjusting speed is accelerated. The integral action is added to the value of the depth of the ploughing to improve the control precision. The experience test is adopted. In the case of Kp=0.08, Ki=1.2 and Kd=0.001, the system has better dynamic response. Compared with the simulation results without PID control algorithm, the system has almost eliminated the deep overshoot of the system. At the same time, the response time is shortened to about 1.4s, and the dynamic response of the control system of the ploughing depth control system is better. On the basis of this, the dynamic response of the PID is achieved. The tillage depth stability test was carried out by the cultivator. The variation coefficient of the tillage depth was 6.05% and 3.54% respectively when the cultivator was working under the presupposition tillage condition of 10cm and 16cm, which reached the agronomic requirements stipulated by the rotary tillage operation.
【學位授予單位】:西南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S222

【參考文獻】

相關期刊論文 前10條

1 何新如;孟祥雨;趙麗萍;;耕整地機械發(fā)展現(xiàn)狀分析[J];山東農(nóng)機化;2014年06期

2 謝斌;李皓;朱忠祥;毛恩榮;;基于傾角傳感器的拖拉機懸掛機組耕深自動測量方法[J];農(nóng)業(yè)工程學報;2013年04期

3 劉震;王玉林;張魯鄒;;基于AMESim的液壓懸掛閥的模擬仿真[J];農(nóng)業(yè)裝備與車輛工程;2011年05期

4 許賀群;;基于改進蟻群算法的PID參數(shù)優(yōu)化[J];制造業(yè)自動化;2011年08期

5 趙育良;孫志;王淑娟;;基于SCA61T的駐車坡度采集[J];兵工自動化;2011年03期

6 杜巧連;熊熙程;魏建華;;拖拉機液壓懸掛耕深電液控制系統(tǒng)設計與試驗[J];農(nóng)業(yè)機械學報;2008年08期

7 吳維雄;馬榮朝;;懸掛犁耕機組耕深自動控制的研究[J];農(nóng)機化研究;2007年09期

8 李慶;羅錫文;汪懋華;趙祚喜;許耀軍;區(qū)穎剛;劉剛;林建涵;司永勝;;采用傾角傳感器的水田激光平地機設計[J];農(nóng)業(yè)工程學報;2007年04期

9 邱麗,曾貴娥,朱學峰,孫培強;幾種PID控制器參數(shù)整定方法的比較研究[J];自動化技術與應用;2005年11期

10 李玲,李江全,李新榮,黃勇,王艷云;耕深電子測試系統(tǒng)的設計與試驗研究[J];石河子大學學報(自然科學版);2001年03期

相關博士學位論文 前1條

1 譚_g;拖拉機液壓懸掛和加載系統(tǒng)性能研究[D];中國農(nóng)業(yè)大學;2004年

相關碩士學位論文 前10條

1 李博;微耕機耕深自動控制系統(tǒng)的設計與研究[D];西南大學;2015年

2 高蕾;棚室電動旋耕機自動控制系統(tǒng)設計[D];東北農(nóng)業(yè)大學;2013年

3 龐磊;汽車EPS試驗臺設計及仿真試驗的研究[D];合肥工業(yè)大學;2013年

4 史強;微耕機動力自動供給控制系統(tǒng)的研究[D];西南大學;2012年

5 錢陽輝;基于電液比例閥控缸位置系統(tǒng)的控制策略及性能研究[D];東華大學;2012年

6 姜海雨;基于高速開關閥的電液位置控制系統(tǒng)研究[D];東北大學;2011年

7 丁向美;基于ARM的微耕機遠程控制系統(tǒng)的研究[D];西南大學;2011年

8 李金輝;大馬力拖拉機電液提升系統(tǒng)設計研究[D];浙江工業(yè)大學;2010年

9 許倩;基于PID策略的電液比例泵控馬達速度控制系統(tǒng)研究[D];長安大學;2008年

10 陳昊;未建模自適應PID控制研究[D];河海大學;2007年

,

本文編號:2120937

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2120937.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶44e78***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com