基于GF-1遙感影像的農(nóng)作物面積測量方法研究
本文選題:農(nóng)作物面積 + 遙感測量; 參考:《吉林大學》2017年碩士論文
【摘要】:在第三次全國農(nóng)業(yè)普查的背景下,針對本次普查的主要工作,即對農(nóng)作物種植面積以及空間分布進行全面準確的調(diào)查,結合目前自動化提取農(nóng)作物面積中存在的問題,本文試圖尋找一種有效地快速獲取大區(qū)域農(nóng)作物總面積測量的方法,為農(nóng)作物面積測算提供基礎數(shù)據(jù)支撐,從而為制定科學的農(nóng)業(yè)發(fā)展計劃提供科學依據(jù)。根據(jù)遙感測量的難易程度,本文設定了三個等級的測量區(qū),選取寧夏平原區(qū)、甘肅梯田區(qū)和貴州破碎區(qū)作為三個級別的代表區(qū)域。結合研究區(qū)物候數(shù)據(jù)以及高分一號(GF-1)WFV 16米衛(wèi)星影像數(shù)據(jù),選擇性獲取時相處于2016年3月-4月的國產(chǎn)衛(wèi)星影像作為農(nóng)作物面積遙感測量基礎數(shù)據(jù),數(shù)據(jù)源以GF-1為主,天繪一號衛(wèi)星(TH-1)為輔。為了提高遙感影像數(shù)據(jù)處理效率,針對GF-1和TH-1全色與多光譜數(shù)據(jù)同步獲取但匹配精度較差的特點,選擇“先配準融合、后正射糾正”的處理流程進行遙感數(shù)據(jù)的批量、快速處理。以研究區(qū)為單位,分別制作正射影像成果。分別采用面向?qū)ο蟮挠嬎銠C自動分類法對4波段正射影像數(shù)據(jù)、人工目視解譯法對真彩色合成后的3波段正射影像數(shù)據(jù)進行農(nóng)作物遙感測量。最后以外業(yè)抽樣調(diào)查數(shù)據(jù)作為真值,從目視效果、測量精度以及測量時間三個方面,對兩種方法測得的農(nóng)作物面積測量結果進行對比分析。通過以上研究,本文主要取得了以下成果:(1)通過對研究區(qū)作物播種前、生長旺盛期、收獲后等多個時相的GF-1WFV 16米衛(wèi)星影像數(shù)據(jù)的充分對比、分析,并結合物候數(shù)據(jù),在單期高分辨率影像數(shù)據(jù)的基礎上,完成了農(nóng)作物遙感測量。由此,提出了一種充分利用GF-1WFV16米數(shù)據(jù)寬幅大、回訪周期短的特點,結合GF-1 2米融合數(shù)據(jù)的高分辨率特點,進行快速、大區(qū)域農(nóng)作物面積測量的調(diào)查方法。(2)針對GF-1、TH-1數(shù)據(jù)特點,選擇“先配準融合、后正射糾正”的處理方式,充分結合各遙感數(shù)據(jù)處理軟件優(yōu)勢,對DOM制作中的配準、波段組合、融合、正射糾正、鑲嵌、色彩調(diào)整、裁切等各主要環(huán)節(jié)均總結、研制了一系列批量、快速處理方法,為今后進行大規(guī)模農(nóng)作物遙感測量提供了海量DOM快速制作解決方案。(3)本文選取了面向?qū)ο蠓诸惡腿斯つ恳暯庾g兩種方法,分別對三個研究區(qū)進行了農(nóng)作物遙感測量,并以外業(yè)抽樣調(diào)查數(shù)據(jù)作為真值,對兩種測量結果進行了對比分析。研究表明:采用面向?qū)ο蠓诸惙ǐ@得的農(nóng)作物面積測量結果在空間分布上與人工目視解譯法基本一致;三類研究區(qū)的整體精度均能達到90%以上,能夠滿足應用需求;而在處理速度上,面向?qū)ο蠓ㄏ啾热斯つ恳暯庾g法,可提高兩倍左右,且隨著測量面積的增加,其測量速度優(yōu)勢越明顯。因此,當需要快速獲取大范圍農(nóng)作物遙感測量結果時,采用面向?qū)ο蟮挠嬎銠C自動分類法是一種比較好的選擇方式。
[Abstract]:In the context of the third National Agricultural Census, in view of the main work of this census, that is, to carry out a comprehensive and accurate survey of crop planting area and spatial distribution, combined with the problems existing in automatic extraction of crop area at present, This paper attempts to find an effective and rapid method for measuring the total area of crops in a large area, which provides the basic data support for the calculation of crop area and provides scientific basis for making scientific agricultural development plan. According to the degree of difficulty and ease of remote sensing measurement, this paper sets up three grades of measuring areas, including Ningxia Plain, Gansu terraced area and Guizhou broken area as the representative regions of the three levels. Combined with phenological data of the study area and Gaof-1 (GF-1) WFV 16m satellite image data, the domestic satellite images from March to April 2016 were used as the basic data of crop area remote sensing measurement. GF-1 was the main data source. Tianyi-1 satellite (TH-1) is auxiliary. In order to improve the efficiency of remote sensing image data processing, aiming at the feature that GF-1 and TH-1 panchromatic data are acquired synchronously with multi-spectral data, but the matching accuracy is poor, the batch of remote sensing data is selected as "registration fusion first, then forward correction". Quick processing. Taking the research area as the unit, the orthophoto image results were made respectively. The orthophoto data of 4 bands were classified by object oriented automatic classification method, and the 3 band orthophoto image data of true color were measured by artificial visual interpretation method. Finally, as the true value, the results of crop area measurement obtained by two methods are compared and analyzed from three aspects: visual effect, measuring precision and measuring time. Through the above research, this paper mainly obtained the following achievements: (1) by comparing and analyzing the GF-1WFV16m satellite image data of the crops in the study area before sowing, growing vigorous period and after harvest, and combining phenological data, Based on single phase high resolution image data, crop remote sensing measurement is completed. Therefore, this paper puts forward an investigation method to make full use of the wide width of GF-1WFV16m data and the short period of return visit, combined with the high resolution characteristics of GF-1 / 2m fusion data, to measure the area of crops in a fast and large area. (2) aiming at the characteristics of GF-1WFV16m data, Selecting the processing method of "first registration fusion, then forward correction", fully combining the advantages of each remote sensing data processing software, making registration, band combination, fusion, orthographic correction, mosaic, color adjustment in Dom production, Cutting and other major links are summarized, developed a series of batch, rapid processing methods, This paper provides a solution for large-scale crop remote sensing measurement in the future. (3) in this paper, two methods, object oriented classification and artificial visual interpretation, are selected to measure crops in three research areas. The data of field sampling survey were used as true value to compare and analyze the two kinds of measurement results. The results show that the measured results of crop area obtained by the object-oriented classification method are basically consistent with the artificial visual interpretation method in spatial distribution, and the overall accuracy of the three study areas can reach more than 90%, which can meet the needs of application. In terms of processing speed, the object-oriented method can increase the speed of measurement by about twice as much as the artificial visual interpretation method, and with the increase of the measurement area, the advantage of the measurement speed is more obvious. Therefore, when it is necessary to quickly obtain the results of crop remote sensing measurement on a large scale, it is a better choice to adopt the object-oriented computer automatic classification method.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S127;TP751
【相似文獻】
相關會議論文 前1條
1 祖冬琦;李瑩;朱乃芬;李亦兵;王淑華;;利用遙感影像提取農(nóng)作物面積和預測產(chǎn)量的方法[A];“加入WTO和科學技術與吉林經(jīng)濟發(fā)展——機遇·挑戰(zhàn)·責任”吉林省第二屆科學技術學術年會論文集(上)[C];2002年
相關重要報紙文章 前10條
1 記者 劉威 通訊員 高志宏;我州春播農(nóng)作物面積21.26萬畝[N];克孜勒蘇報;2007年
2 木魚;天津春播農(nóng)作物面積預計400萬畝[N];糧油市場報;2007年
3 首席記者 魏貴富;今年我省春播農(nóng)作物面積將達3924萬畝[N];山西經(jīng)濟日報;2009年
4 李靜 張學民;我市春播作物結構漸趨合理[N];德州日報;2006年
5 王善業(yè) 林婕;我市“雙夏”工作基本完成[N];韶關日報;2009年
6 ;我市32萬畝春播土地 因旱不能下種[N];蘭州日報;2010年
7 浙農(nóng);浙江省今年冬播農(nóng)作物面積全面回升[N];糧油市場報;2004年
8 記者 李永桃 通訊員 張永剛;人保財險內(nèi)蒙古分公司保費收入突破30億元[N];內(nèi)蒙古日報(漢);2010年
9 記者 王穎;海東春播已播種30萬畝[N];青海日報;2010年
10 記者 阿天梅;13家龍頭企業(yè)帶動1.6萬戶農(nóng)牧戶[N];柴達木報;2010年
相關碩士學位論文 前3條
1 張亞亞;基于GF-1遙感影像的農(nóng)作物面積測量方法研究[D];吉林大學;2017年
2 鄂月勝;農(nóng)作物種植面積遙感監(jiān)測系統(tǒng)設計與實現(xiàn)[D];湖北大學;2011年
3 張蕊;大尺度農(nóng)作物面積車載調(diào)查輔助系統(tǒng)軟件設計[D];西北農(nóng)林科技大學;2008年
,本文編號:2104739
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2104739.html