凡納濱對(duì)蝦和羅氏沼蝦親蝦養(yǎng)殖塘水質(zhì)及微生物群落多樣性的研究
本文選題:凡納濱對(duì)蝦 + 大棚養(yǎng)殖; 參考:《上海海洋大學(xué)》2017年碩士論文
【摘要】:凡納濱對(duì)蝦因具有適應(yīng)能力強(qiáng)、生長(zhǎng)快、營(yíng)養(yǎng)需求低等優(yōu)點(diǎn)已成為我國(guó)對(duì)蝦養(yǎng)殖的主要品種之一。羅氏沼蝦是一種世界性優(yōu)良淡水蝦種,因個(gè)體大、生長(zhǎng)周期短、食性廣、易養(yǎng)殖和肉質(zhì)美味等優(yōu)點(diǎn),具有較高經(jīng)濟(jì)價(jià)值,是發(fā)展前景較好的特種水產(chǎn)品之一。2016年4-6月在上海市奉賢區(qū)潘墊村某水產(chǎn)養(yǎng)殖合作社每5天1次采集7個(gè)凡納濱對(duì)蝦大棚養(yǎng)殖塘的水樣;實(shí)驗(yàn)結(jié)束時(shí)采集底泥,對(duì)水質(zhì)以及池水和底泥中微生物群落多樣性進(jìn)行了分析,并探討了養(yǎng)殖池水中微生物群落隨時(shí)間的變化規(guī)律以及水質(zhì)因子與微生物群落組成之間的相關(guān)性。2014年12月-2015年3月,在上海市金山區(qū)廊下鎮(zhèn)某水產(chǎn)公司建立了羅氏沼蝦親蝦越冬池外置式循環(huán)養(yǎng)殖系統(tǒng)。越冬池水經(jīng)泵抽提至外置式生物濾器頂部,水流自頂部向下流經(jīng)由納米纖維膜構(gòu)成的濾料后,再?gòu)臑V器底部流出回到越冬池中,在越冬池內(nèi)同時(shí)還懸掛了由普通纖維制成的人工水草。每3-4天采集水樣,并在實(shí)驗(yàn)結(jié)束時(shí)采集水樣、人工水草、納米纖維濾料樣品。對(duì)羅氏沼蝦親蝦越冬池的水質(zhì)進(jìn)行了分析,利用高通量Miseq測(cè)序技術(shù)對(duì)池水、人工水草和納米纖維濾料3種不同基質(zhì)上的微生物群落進(jìn)行了多樣性分析。凡納濱對(duì)蝦大棚養(yǎng)殖塘水質(zhì)監(jiān)測(cè)結(jié)果如下:1)在凡納濱對(duì)蝦大棚養(yǎng)殖塘中,pH、溶解氧(DO)和溫度(T)平均值分別為(8.00±0.30)、(6.76±1.41)mg·L-1和(25.9±2.91)℃,均符合凡納濱對(duì)蝦生長(zhǎng)條件。整個(gè)養(yǎng)殖過(guò)程中,化學(xué)需氧量(COD)、氨氮(TAN)、總氮(TN)在各養(yǎng)殖塘間無(wú)顯著差異(p0.05);亞硝態(tài)氮(NO2--N)、硝態(tài)氮(NO3--N)、總磷(TP)、活性磷(AP)在各養(yǎng)殖塘間差異極顯著(p0.01)。4、5、6、7、8、12和13號(hào)塘在養(yǎng)殖全程中TAN平均值分別為(0.88±0.55)、(0.84±1.00)、(1.07±0.87)、(0.87±0.69)、(0.74±0.48)、(0.65±0.50)和(0.76±0.56)mg·L-1,NO2--N平均值分別為(0.24±0.16)、(0.32±0.22)、(0.44±0.17)、(0.17±0.26)、(0.28±0.24)、(0.20±0.19)和(0.18±0.21)mg·L-1,基本在凡納濱對(duì)蝦可承受范圍之內(nèi)。養(yǎng)殖過(guò)程中TP和AP含量很低,各塘平均值分別為(0.06±0.04)、(0.17±0.10)、(0.17±0.12)、(0.12±0.07)、(0.13±0.05)、(0.09±0.06)、(0.09±0.05)mg·L-1和(0.01±0.001)、(0.07±0.10)、(0.09±0.11)、(0.02±0.01)、(0.03±0.02)、(0.02±0.01)、(0.02±0.01)mg·L-1。整體來(lái)看,養(yǎng)殖塘水質(zhì)符合凡納濱對(duì)蝦生長(zhǎng)所需。2)羅氏沼蝦親蝦越冬期間,越冬池pH維持在(7.64±0.31),DO維持在(6.01±0.31)mg·L-1,COD平均值為(4.17±2.06)mg·L-1,NO2--N平均值為(0.25±0.15)mg·L-1,TAN平均值為(0.16±0.07)mg·L-1。越冬期間親蝦池水質(zhì)始終保持在良好狀態(tài),并且在循環(huán)水系統(tǒng)開(kāi)啟約40d后水質(zhì)達(dá)到了相對(duì)穩(wěn)定的狀態(tài)。因此,通過(guò)在育苗池中懸掛人工水草,配合內(nèi)含納米纖維濾料的外置式生物濾器,可使羅氏沼蝦越冬親蝦池保持良好的水質(zhì)。利用高通量測(cè)序技術(shù)對(duì)凡納濱對(duì)蝦大棚養(yǎng)殖塘池水與底泥以及羅氏沼蝦親蝦越冬池水、人工水草、納米纖維濾料上的微生物群落結(jié)構(gòu)進(jìn)行研究,結(jié)果如下:1)在屬水平上,凡納濱對(duì)蝦大棚養(yǎng)殖塘池水中共檢測(cè)并鑒定出812種微生物,隸屬于39個(gè)門(mén),其中未鑒定出微生物占微生物總量的29%。以屬類(lèi)豐度0.1%為標(biāo)準(zhǔn),得到85種微生物,占微生物總量的65%。在門(mén)水平上,以門(mén)類(lèi)豐度0.1%為標(biāo)準(zhǔn)得到優(yōu)勢(shì)菌有9種,分別為變形菌門(mén)(Proteobacteria)、放線菌門(mén)(Actinobacteria)、藍(lán)細(xì)菌(Cyanobacteria)、擬桿菌門(mén)(Bacteroidetes)、厚壁菌門(mén)(Firmicutes)、綠菌門(mén)(Chlorobi)、酸桿菌門(mén)(Acidobacteria)、綠彎菌門(mén)(Chloroflexi)和芽單胞菌門(mén)(Gemmatimonadetes),其中變形菌門(mén)、放線菌門(mén)、藍(lán)細(xì)菌和擬桿菌門(mén)占絕對(duì)優(yōu)勢(shì),分別占微生物群落總豐度的60%、16%、10%和9%;厚壁菌門(mén)和綠菌門(mén)豐度相對(duì)較大,分別為3%和1%。在門(mén)類(lèi)微生物中以豐度0.1%為標(biāo)準(zhǔn),對(duì)每個(gè)塘池水中前10種微生物進(jìn)行統(tǒng)計(jì),在7個(gè)塘中均有優(yōu)勢(shì)門(mén)類(lèi)5種,分別為變形菌門(mén)、放線菌門(mén)、擬桿菌門(mén)、厚壁菌門(mén)和藍(lán)細(xì)菌;4、5和8號(hào)塘分別特有柔膜菌門(mén)(Tenericutes)、迷蹤菌門(mén)(Elusimicrobia)和螺旋體門(mén)(Spirochaetes)。2)在屬水平上,凡納濱對(duì)蝦大棚養(yǎng)殖塘底泥中共檢測(cè)并鑒定出819種微生物,隸屬于50個(gè)門(mén),其中未鑒定出的微生物占微生物總量的31%。以屬類(lèi)豐度0.1%,得到131種微生物,占微生物總量的59%。在門(mén)水平上,以門(mén)類(lèi)豐度0.1%為標(biāo)準(zhǔn),得到16種微生物,分別為變形菌門(mén)、擬桿菌門(mén)、厚壁菌門(mén)、酸桿菌門(mén)、芽單胞菌門(mén)、放線菌門(mén)、綠菌門(mén)、柔膜菌門(mén)、硝化螺旋菌門(mén)(Nitrospirae)、絲桿菌門(mén)(Fibrobacteres)、螺旋體門(mén)(Spirochaetes)、疣微菌門(mén)(Verrucomicrobia)、藍(lán)細(xì)菌、迷蹤菌門(mén)、綠彎菌門(mén)和梭桿菌門(mén)(Fusobacteria),占微生物總量的98%;其中,變形菌門(mén)、擬桿菌門(mén)和厚壁菌門(mén)占絕對(duì)優(yōu)勢(shì)地位,分別占微生物總量的46%、17%和16%,酸桿菌門(mén)、芽單胞菌門(mén)、放線菌門(mén)和綠菌門(mén)占相對(duì)優(yōu)勢(shì)地位,分別占微生物總量的3.8%、3.1%、3%和1.3%。以門(mén)類(lèi)豐度0.1%為標(biāo)準(zhǔn),對(duì)每個(gè)塘底泥中前10種微生物進(jìn)行統(tǒng)計(jì),在7個(gè)塘中均有優(yōu)勢(shì)微生物6種,分別為變形菌門(mén)、擬桿菌門(mén)、厚壁菌門(mén)、酸桿菌門(mén)、放線菌和芽單胞菌門(mén)。3)通過(guò)物種組成熱圖和條形圖可知:在門(mén)類(lèi)水平上,在大棚養(yǎng)殖塘池水中,變形菌門(mén)、放線菌和擬桿菌門(mén)在養(yǎng)殖初期就已形成絕對(duì)優(yōu)勢(shì)地位,且在整個(gè)養(yǎng)殖過(guò)程中都處于絕對(duì)優(yōu)勢(shì)地位,而藍(lán)細(xì)菌在養(yǎng)殖中期逐漸開(kāi)始處于優(yōu)勢(shì)地位;在屬水平上,處于優(yōu)勢(shì)地位的微生物會(huì)隨著時(shí)間、養(yǎng)殖條件的改變而不斷地發(fā)生變化,原先處于優(yōu)勢(shì)地位的微生物可能會(huì)在某一時(shí)間點(diǎn)處于劣勢(shì)地位。整體來(lái)看,在門(mén)水平上,占優(yōu)勢(shì)地位的微生物對(duì)微生物群落組成貢獻(xiàn)極大;在屬水平上,微生物種類(lèi)多,但豐度不大,且大部分微生物對(duì)微生物總量的都有貢獻(xiàn),而對(duì)這些微生物的功能作用目前尚未有了解,故不可忽略。4)利用典型相關(guān)分析(canonical correlation analysis,CCA)對(duì)凡納濱對(duì)蝦大棚養(yǎng)殖塘水質(zhì)與水中微生物群落結(jié)構(gòu)的相關(guān)性、水質(zhì)與底泥中微生物群落結(jié)構(gòu)的相關(guān)性進(jìn)行了分析。結(jié)果發(fā)現(xiàn),池水中微生物群落結(jié)構(gòu)受DO、pH、COD、TN影響較大,其中p H影響最大;在養(yǎng)殖塘底泥中,微生物群落結(jié)構(gòu)受T、ALK、AP、NO3--N影響較大,其中受T影響最大。利用高通量Miseq測(cè)序技術(shù)測(cè)定了羅氏沼蝦越冬池池水、池中人工水草(普通纖維膜)以及外置式生物濾器中的納米纖維濾料3種不同基質(zhì)上的微生物群落組成。不同基質(zhì)上的微生物組成和多樣性都不相同。在3種基質(zhì)上共檢測(cè)并鑒定出細(xì)菌64種,隸屬于9門(mén)64屬,包括變形菌門(mén)、放線菌門(mén)、擬桿菌門(mén)、綠彎菌門(mén)、厚壁菌門(mén)、浮霉菌門(mén)(Planctomycetes)、硝化螺旋菌門(mén)、酸桿菌門(mén)和綠菌門(mén)。從分類(lèi)學(xué)屬的水平上對(duì)3種基質(zhì)上的細(xì)菌進(jìn)行分析,發(fā)現(xiàn)養(yǎng)殖池水中含量最高的為叢毛單菌科的一個(gè)屬(Comamonadaceae_unclassified),其也是3種基質(zhì)的共有優(yōu)勢(shì)菌屬;普通纖維膜上為Inhella,納米纖維膜上則是小紡錘狀菌屬(Fusibacter)。3種基質(zhì)上細(xì)菌群落多樣性順序?yàn)?納米纖維膜普通纖維膜養(yǎng)殖池水。
[Abstract]:Penaeus vannamei has become one of the main varieties of prawns in China because of its strong adaptability, fast growth and low nutrition demand. One of the species of aquatic products in 4-6 months of.2016 in Fengxian District, Shanghai, an aquaculture co - operative of Pan mat village, Fengxian District, collected water samples for 1 times every 5 days, and the sediment was collected at the end of the experiment. The microbial community diversity in water and pond water and sediment was analyzed, and the microbial community in the aquaculture pool was discussed with time. The correlation between the changes of the water quality and the composition of the microbial community in the December -2015 year of December in.2014, Jinshan District, Shanghai City, an aquaculture system was set up in the Aquatic company of the lobster prawns in Jinshan District, Shanghai City, which was pumped to the top of the external Biofilter by pumping the water through the pump. After the filter material made up of the rice fiber membrane, the water samples made from ordinary fiber were suspended from the bottom of the filter back to the overwintering pool, and the water samples were collected every 3-4 days, and the water samples were collected at the end of the experiment, the artificial water and grass and the nanofiber filter samples were collected. High throughput Miseq sequencing technology was used to analyze the diversity of microbial communities on 3 different substrates of pool water, artificial water grass and nanofiber filter material. The results of water quality monitoring of shrimp pond culture ponds in Van Nanbin were as follows: 1) the average values of pH, dissolved oxygen (DO) and temperature (T) were (8 + 0.30) and (6.76 + 1.41) mg respectively in the pond culture ponds of Penaeus vannamei. L-1 and (25.9 + 2.91) C were all suitable for the growth conditions of Penaeus vannamei. In the whole culture process, the chemical oxygen demand (COD), ammonia nitrogen (TAN) and total nitrogen (TN) had no significant difference (P0.05), and nitrite nitrogen (NO2--N), nitrate nitrogen (NO3--N), total phosphorus (TP), and active phosphorus (AP) were very significant (P0.01).4,5,6,7,8,12 and No. 13 ponds in the pond. The average values of TAN were (0.88 + 0.55), (0.84 + 1), (1.07 + 0.87), (0.87 + 0.69), (0.74 + 0.48), (0.65 + 0.50) and (0.76 + 0.84) mg. L-1 respectively. The mean value of NO2--N Within the breeding process, the content of TP and AP is very low, and the average values of the ponds are (0.06 + 0.04), (0.17 + 0.10), (0.17 + 0.12), (0.13 + 0.05), (0.09 + 0.06), (0.09 + 0.12), (0.12), (0.12), (0.12), Mg. During the winter of the growth of Penaeus vannamei.2), during the winter of the shrimp, the pH of the wintering shrimp was maintained at (7.64 + 0.31), DO was maintained at (6.01 + 0.31) mg. L-1, the average value of COD was (4.17 + 2.06) mg. L-1, NO2--N average value was (0.25 + 0.15) mg L-1, and TAN average was (0.16 + 0.07). The water quality reached a relatively stable state after the opening of the circulating water system for about 40d. Therefore, by hanging artificial water grass in the nursery and combining with the external biofilter containing nanofiber filter material, the shrimp pond in the winter can keep good water quality. The microbial community structure on the wintering pond water, artificial water and grass and nanofiber filter material were studied. The results were as follows: 1) at the level of the genus, 812 kinds of microbes were detected and identified in the pond water of Penaeus vannamei aquaculture, which belonged to 39 doors, of which 29%. was not identified as the total amount of microbes. Degree 0.1% was the standard to obtain 85 kinds of microbes, which accounted for 65%. of total microbial biomass at the gate level, and 9 species of dominant bacteria were obtained by the standard of class abundance 0.1%, which were deformable bacteria gate (Proteobacteria), actinomycetes (Actinobacteria), cyanobacteria (Cyanobacteria), pseudomycetes (Bacteroidetes), Firmicutes, Chlorobi, acid. Bacilli (Acidobacteria), Chloroflexi and Gemmatimonadetes, including deformable bacteria, actinomycetes, cyanobacteria and Pseudomonas, accounted for 60%, 16%, 10% and 9% of the total abundances of microbial communities, and the abundance of the phylum and phylum was 3% and 1%., respectively, in the phylum species. Degree 0.1% is the standard. There are 10 kinds of microorganisms in each pond water. There are 5 dominant species in 7 ponds, which are deformable bacteria doors, actinomycetes, bacteriobacteria, thick wall bacteria and cyanobacteria; 4,5 and No. 8 are Tenericutes, Elusimicrobia and Spirochaetes.2) at the level of the genus 819 kinds of microbes were detected and identified 819 kinds of microbes in the pond sediment of Penaeus vannamei, which belonged to 50 doors, of which the unidentified microbes accounted for 31%. of the total amount of microbe, 0.1% of the genera, 131 kinds of microbes, which accounted for the total amount of 59%. at the gate level, and 16 kinds of microbes were obtained by the standard of the phylum abundances 0.1%. Bacteria gate, Pseudomonas, bacilli, acid bacilli, bud monomonas, actinomycetes, actinomycetes, green bacteria gate, soft membrane bacteria gate, Nitrospirae, Fibrobacteres, Spirochaetes, Verrucomicrobia, cyanobacteria, trace bacteria, phylum aeruginosa, and Clostridium (Fusobacteria), accounting for microbes. 98% of the amount, among them, deformable bacteria doors, Pseudomonas and thick walled bacteria accounted for 46%, 17% and 16% of the total microbial total, acid bacilli, buds, actinomyces, actinomycetes and green bacteria, accounting for 3.8%, 3.1%, 3% and 1.3%., respectively, and 0.1% as the standard, and 10 in the bottom of each pond. There are 6 dominant microbes in the 7 ponds, including deformable bacteria gate, Pseudomonas, actinomycetes, acid bacilli, actinomycetes and bufominomonas.3 through species composition heat map and bar chart. It is known that in the class level, in the pond pond water, deformable bacteria gate, actinomycetes and Pseudomonas aeruginosa at the early stage of culture. It has formed an absolute dominant position and is in an absolute dominant position during the whole breeding process, and the cyanobacteria gradually begin to be in the dominant position in the medium period of culture. At the level, the dominant microbes will change continuously with the time and the culture conditions, and the previously dominant microorganisms may be able to change. As a whole, the dominant microorganism contributes greatly to the composition of microbial communities on the level of the door; at the level of the genus, there are many kinds of microbes but not much abundance, and most microorganisms contribute to the total amount of microbes, and the function of these microbes has not yet been understood. The correlation between water quality and microbial community structure in aquaculture ponds of Penaeus vannamei was studied by.4 (canonical correlation analysis, CCA). The correlation between water quality and microbial community structure in sediment was analyzed. The results showed that the microbial community structure in the pool was greatly influenced by DO, pH, COD, and TN. The influence of medium P H was the greatest. In the sediment of culture pond, the microbial community structure was greatly influenced by T, ALK, AP and NO3--N, among which T was most affected. The high throughput Miseq sequencing technology was used to determine the wintering pool water of the Macrobrachium Roche, the artificial water and grass (ordinary fiber membrane) in the pool and the nanofiber filter material of the external biofilter on 3 different substrates. Microbial composition and diversity on different substrates were different. 64 species of bacteria were detected and identified on 3 substrates, belonging to 9 families, 64 genera, including deformable fungi, actinomycetes, Pseudomonas, green Bens, Planctomycetes, nitrifying spiraces, acid bacilli and green bacteria. At the level of the genus, the bacteria on the 3 substrates were analyzed. It was found that the highest content of the aquaculture pool was Comamonadaceae_unclassified, which was also the dominant genus of 3 substrates; the ordinary fiber membrane was Inhella, and the nanofiber membrane was the bacterial community on the Fusibacter.3 substrate. The order of diversity is nanofiber membrane, common fiber membrane, aquaculture pond water.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S966.12;S968.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王光華;劉俊杰;于鎮(zhèn)華;王新珍;金劍;劉曉冰;;土壤酸桿菌門(mén)細(xì)菌生態(tài)學(xué)研究進(jìn)展[J];生物技術(shù)通報(bào);2016年02期
2 王軍霞;李莉娜;陳敏敏;封雪;秦承華;唐桂剛;景立新;;中國(guó)重點(diǎn)污染源總磷、總氮排放狀況研究[J];環(huán)境污染與防治;2015年10期
3 趙曉偉;丁君;竇妍;王夢(mèng)鴿;常亞青;;基于MiSeq測(cè)序技術(shù)分析紅鰭東方渶養(yǎng)殖環(huán)境菌群多樣性[J];生態(tài)學(xué)雜志;2015年10期
4 李志斐;王廣軍;謝駿;郁二蒙;余德光;夏耘;魏南;;草魚(yú)養(yǎng)殖池塘生物膜固著微生物群落碳代謝Biolog分析[J];水產(chǎn)學(xué)報(bào);2014年12期
5 冼健安;錢(qián)坤;郭慧;苗玉濤;王安利;王冬梅;;氨氮對(duì)蝦類(lèi)毒性影響的研究進(jìn)展[J];飼料工業(yè);2014年22期
6 鄧霏;鄢慶枇;黃偉卿;熊何健;王程程;馬英;;大黃魚(yú)網(wǎng)箱養(yǎng)殖水體的細(xì)菌群落結(jié)構(gòu)[J];中國(guó)水產(chǎn)科學(xué);2014年06期
7 辛建美;李倩;周志明;胡廷尖;王軍毅;劉士力;王雨辰;;羅氏沼蝦育苗系統(tǒng)中生物濾池對(duì)水質(zhì)的凈化作用[J];環(huán)境化學(xué);2014年05期
8 高大文;辛?xí)詵|;;MBR膜污染過(guò)程中微生物群落結(jié)構(gòu)與代謝產(chǎn)物分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2014年02期
9 黃佩蓓;焦念志;馮潔;舒青龍;;海洋浮霉?fàn)罹鄻有耘c生態(tài)學(xué)功能研究進(jìn)展[J];微生物學(xué)通報(bào);2014年09期
10 李曉;李冰;董玉峰;朱健;;精養(yǎng)團(tuán)頭魴池塘沉積物微生物群落的結(jié)構(gòu)特征及組成多樣性分析[J];水產(chǎn)學(xué)報(bào);2014年02期
相關(guān)博士學(xué)位論文 前4條
1 閆法軍;刺參(Apostichopus japonicus Selenka)養(yǎng)殖池塘生態(tài)系統(tǒng)微生物結(jié)構(gòu)與功能研究[D];中國(guó)海洋大學(xué);2013年
2 鳳權(quán);功能性納米纖維的制備及固定化酶研究[D];江南大學(xué);2012年
3 王春艷;污染環(huán)境中特定功能微生物多樣性調(diào)查研究[D];大連海事大學(xué);2008年
4 劉曉猛;微生物聚集體的相互作用及形成機(jī)制[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 陳佳毅;羅氏沼蝦親蝦群體遺傳結(jié)構(gòu)分析及育苗參數(shù)比較[D];揚(yáng)州大學(xué);2016年
2 王姣;高通量測(cè)序技術(shù)分析兩種養(yǎng)殖模式水環(huán)境菌群結(jié)構(gòu)[D];上海海洋大學(xué);2016年
3 李亞平;入滇池河口沉積物中反硝化細(xì)菌的多樣性及其脫氮性能的研究[D];云南大學(xué);2015年
4 張皓;養(yǎng)殖環(huán)境微生物群落的動(dòng)態(tài)變化及與水環(huán)境的互作[D];蘇州大學(xué);2015年
5 王婷;基于高通量轉(zhuǎn)錄組數(shù)據(jù)的大菱鲆SNP標(biāo)記篩選及相關(guān)功能基因的研究[D];大連海洋大學(xué);2014年
6 盧陽(yáng)陽(yáng);生活污水同步硝化反硝化脫氮研究[D];北京交通大學(xué);2014年
7 薛瀟;功能性納米纖維材料在水過(guò)濾中的應(yīng)用[D];武漢紡織大學(xué);2013年
8 王亭芳;南美白對(duì)蝦養(yǎng)殖水體中微生物多樣性分析[D];華東師范大學(xué);2012年
9 王威;海水循環(huán)水養(yǎng)殖系統(tǒng)中生物濾料的微生物掛膜與水處理效果研究[D];中國(guó)海洋大學(xué);2012年
10 鄭瑤瑤;草魚(yú)混養(yǎng)系統(tǒng)菌群結(jié)構(gòu)與功能多樣性的研究[D];中國(guó)海洋大學(xué);2012年
,本文編號(hào):2004937
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2004937.html