大豆耕播機(jī)觸土關(guān)鍵部件設(shè)計(jì)及測試技術(shù)研究
本文選題:大豆耕播機(jī) + 耕作部件; 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:耕播聯(lián)合作業(yè)機(jī)組一次下地能完成耕整地和播種等多項(xiàng)作業(yè),能高效地完成農(nóng)作物的種植,因此,大豆耕播機(jī)是實(shí)現(xiàn)大豆種植機(jī)械化最重要的機(jī)具之一。大豆耕播機(jī)機(jī)組完成耕地、整地和播種等作業(yè)機(jī)械的任務(wù),需要連續(xù)地與田間土壤接觸進(jìn)行作業(yè),這對大豆耕播機(jī)觸土部件的工作性能具有很高的要求。本文對大豆耕播機(jī)觸土部件中的耕作和鎮(zhèn)壓關(guān)鍵部件做了相關(guān)研究,主要研究了大豆耕播機(jī)耕作部件減阻耐磨耦合仿生表面結(jié)構(gòu)的制備方法及其作業(yè)阻力參數(shù)的測試,以及大豆耕播機(jī)鎮(zhèn)壓裝置鎮(zhèn)壓力參數(shù)的測試。針對耕作部件既要提高耐磨性又要保證強(qiáng)度存在矛盾、以及耕作阻力大的問題,本文提出了一種通過構(gòu)建仿生表面結(jié)構(gòu)和控制工藝(設(shè)置冷鐵)來設(shè)計(jì)結(jié)構(gòu)/材料二元耦合仿生表面結(jié)構(gòu)的方法。運(yùn)用此方法采用球墨鑄鐵材料進(jìn)行砂型鑄造制備試樣,并進(jìn)行了相關(guān)試驗(yàn)。微觀組織分析表明:單純通過構(gòu)建仿生表面結(jié)構(gòu)或局部設(shè)置小型冷鐵的方法,試樣表面結(jié)構(gòu)局部均未能形成白口鐵組織,而上述兩種方法的結(jié)合運(yùn)用,可耦合實(shí)現(xiàn)球墨鑄鐵試樣仿生表面結(jié)構(gòu)的白口化。顯微硬度和劃痕試驗(yàn)表明:耦合仿生表面結(jié)構(gòu)具有較高的局部硬度,相比于芯部基體,其顯微硬度值平均提高了35.71%,而形成相同寬度的劃痕時(shí),其所需載荷是芯部基體的1.16倍。磨料磨損試驗(yàn)結(jié)果表明:構(gòu)建仿生表面結(jié)構(gòu)和設(shè)置冷鐵試樣的磨損量均小于無結(jié)構(gòu)無冷鐵試樣,構(gòu)建仿生表面結(jié)構(gòu)且設(shè)置冷鐵試樣的磨損量最小。各試驗(yàn)結(jié)果說明耦合仿生表面結(jié)構(gòu)具備了內(nèi)部球墨鑄鐵韌性好、外部表面白口組織硬度高的特點(diǎn),從而兼顧部件的耐磨性和機(jī)械性能。水潤濕性試驗(yàn)結(jié)果表明:耦合仿生表面結(jié)構(gòu)處水接觸角高于芯部組織的水接觸角,其接觸角增大了14.91%,更大的接觸角有利于降低土壤粘附,表面水接觸角的梯度分布有利于實(shí)現(xiàn)粘附土壤脫附。磨料磨損試驗(yàn)中受力分析表明:仿生表面結(jié)構(gòu)對樣品的切向力有較大的影響,構(gòu)建仿生表面結(jié)構(gòu)的試樣切向受力最小。各試驗(yàn)結(jié)果說明耦合仿生表面結(jié)構(gòu)具有一定的減阻效果。運(yùn)用結(jié)構(gòu)和材料二元耦合仿生設(shè)計(jì)的方法,加工制備了具有仿生表面結(jié)構(gòu)的耦合仿生雙翼型深松鏟尖。針對耕作部件(如深松鏟、起壟鏟等)田間作業(yè)時(shí)阻力采集困難和相關(guān)阻力測試裝置結(jié)構(gòu)復(fù)雜、維護(hù)使用成本高、缺乏過載保護(hù)等問題,設(shè)計(jì)了一種耕作部件作業(yè)阻力測試裝置(TRTD),并以雙翼型深松鏟為例,建立了包含修正系數(shù)k與扭簧轉(zhuǎn)角θ、耕深H、耕速V、土壤容積密度ρ、深松鏟結(jié)構(gòu)參數(shù)等換算關(guān)系的耕作阻力測試方法,與傳統(tǒng)三點(diǎn)式作業(yè)阻力測試系統(tǒng)(TTD)在6組耕作條件下進(jìn)行了土槽對比試驗(yàn)。精度分析結(jié)果表明TRTD相比于TTD的最大相對誤差為1.34%,波動性分析結(jié)果表明TRTD與TTD的波動幅值比較接近,兩者最大相對偏差不超過5%。采用本文設(shè)計(jì)的阻力測試裝置對比分析了本文設(shè)計(jì)的仿生雙翼型深松鏟尖和傳統(tǒng)雙翼型深松鏟尖的水平耕作阻力,試驗(yàn)結(jié)果表明,仿生雙翼型深松鏟尖一定程度上減小了深松鏟的耕作阻力。本文提出了一種基于仿形彈性鎮(zhèn)壓輥的鎮(zhèn)壓力測試方法,采用等效土壤堅(jiān)實(shí)度的方法,建立了適應(yīng)于播種表土層(0-100 mm)的鎮(zhèn)壓輥偏心量-等效土壤堅(jiān)實(shí)度-鎮(zhèn)壓力的數(shù)學(xué)關(guān)系模型。土槽驗(yàn)證試驗(yàn)結(jié)果表明,采用鎮(zhèn)壓輥鎮(zhèn)壓力測試方法測量得的土壤堅(jiān)實(shí)度與人工實(shí)地測量的土壤堅(jiān)實(shí)度比較貼合,且在3種不同的含水量條件下都比較適用;诶碚摲治龊屯敛墼囼(yàn),進(jìn)行了田間綜合試驗(yàn):1)利用耕作阻力測試裝置對深松鏟尖進(jìn)行耕作阻力田間試驗(yàn),對兩種類型的深松鏟尖進(jìn)行了阻力對比分析。2)進(jìn)行鎮(zhèn)壓力田間試驗(yàn),考察基于彈性鎮(zhèn)壓輥的鎮(zhèn)壓力測試方法的田間工作效果。
[Abstract]:The ploughing and sowing unit can complete the ploughing and sowing and so on at one time, and can efficiently complete the planting of the crops. Therefore, the soybean ploughing and seeding machine is one of the most important machines to realize the mechanization of soybean planting. In this paper, the key parts of the tillage and repression in the soil parts of the soybean ploughing and sowing machine are studied in this paper. The preparation methods and the resistance parameters of the coupling bionic surface structure of the resistance and wear resistance of the tillage parts of the soybean ploughing sowing machine are mainly studied in this paper. The test, as well as the test of the pressure parameters of the town pressing device of the soybean ploughing machine. In view of the problems of improving the wearability and the strength of the tillage, and the large resistance to the tillage, a bionic structure / material two element coupling surface structure is designed by the construction of a bionic surface structure and a control process (setting cold iron). Using this method, the spheroidal graphite cast iron material was used to make sand mold preparation samples and the related tests were carried out. The microstructure analysis showed that the surface structure of the sample was not formed by the method of constructing the bionic surface structure or the local setting of the small cold iron, and the combination of the above two methods could be used. The microhardness and scratch test show that the coupling bionic surface structure has high local hardness, and the microhardness value of the coupled bionic surface structure is higher than that of the core substrate by 35.71%, while the load required for the same width is 1.16 times that of the core matrix. The results show that the wear amount of the bionic surface structure and the set of cold iron specimen is less than that of the non structure non cold iron specimen. The structure of the bionic surface structure and the wear quantity of the cold iron specimen are the smallest. The results show that the coupling bionic surface structure has the characteristics of good toughness of the inner ductile iron and the high hardness of the white surface on the external surface. The water wettability test results show that the water contact angle of the coupled biomimetic surface structure is higher than the water contact angle of the core, and the contact angle increases by 14.91%. The larger contact angle is beneficial to the reduction of soil adhesion, and the gradient distribution of the surface water contact angle is beneficial to the desorption of soil adhesion. The stress analysis in the loss test shows that the bionic surface structure has a great influence on the tangential force of the sample, and the specimen with the bionic surface structure has the smallest shear stress. The results show that the coupling bionic surface structure has a certain drag reduction effect. The bionic table is prepared by the method of two element coupling bionic design of the structure and material. In the field of farming parts (such as deep loosening shovel, ridging shovel, etc.), the resistance acquisition difficulty and the related resistance testing device are complex, the maintenance cost is high, and the overload protection is short of overload protection. A kind of TRTD is designed, and the double wing type deep loosening shovel is designed. For example, the method of resistance testing is established, which includes the correction coefficient K and the torsion spring angle theta, the ploughing depth H, the tillage speed V, the soil volume density p, the deep loosing shovel structure parameters and so on, and the traditional three point resistance test system (TTD) has carried out the soil grooves comparison test under the 6 groups of tillage conditions. The accuracy analysis results show that the TRTD is the largest compared to the TTD. The relative error is 1.34%. The fluctuation analysis shows that the fluctuation amplitude of TRTD and TTD is close, and the maximum relative deviation is not more than 5%.. The resistance testing device designed in this paper is used to compare and analyze the horizontal tillage resistance of the bionic double wing spade tip and the traditional double wing type deep loosening shovel. A deep loosening shovel tip reduces the tillage resistance of the deep loosening shovel to a certain extent. In this paper, a new method of pressure testing based on an imitation elastic repression roll is proposed. By using the method of equivalent soil firmness, a mathematical relationship model of the eccentricity of the repression roll, which is suitable for the sowing surface layer (0-100 mm), is established. The test results show that the soil firmness measured by the repression roll town pressure test method is close to the soil firmness measured by artificial field, and is more suitable under 3 different water content conditions. Based on the theoretical analysis and soil trough test, the field fully mechanized test is carried out: 1) the use of tillage resistance testing device for deep loosening is made. The field experiment on the resistance of the shovel was carried out, and the resistance contrast analysis of two types of deep slack shovel pointed.2) was carried out in the field test of pressure in the town. The effect of the field work on the pressure test method based on the elastic pressing roll was investigated.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S223.24
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 賈洪雷;羅曉峰;王文君;趙佳樂;郭明卓;莊健;;滑動耕作部件作業(yè)阻力測試裝置設(shè)計(jì)與試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年04期
2 張祥彩;李洪文;王慶杰;何進(jìn);鄭智旗;;我國北方地區(qū)機(jī)械化深松技術(shù)的研究現(xiàn)狀[J];農(nóng)機(jī)化研究;2015年08期
3 賈洪雷;王文君;莊健;羅曉峰;姚鵬飛;李楊;;仿形彈性鎮(zhèn)壓輥減粘防滑結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年06期
4 賈洪雷;王文君;莊健;羅曉峰;姚鵬飛;李楊;;仿形彈性鎮(zhèn)壓輥設(shè)計(jì)與試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年06期
5 趙金輝;楊學(xué)軍;劉立晶;劉忠軍;周軍平;靳晨;;基于PLC的播種機(jī)開溝器力學(xué)性能測試裝置[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年S1期
6 馬成燕;侯林山;;黑龍江墾區(qū)大豆生產(chǎn)機(jī)械化技術(shù)及裝備[J];農(nóng)機(jī)科技推廣;2014年08期
7 張迪;王紅光;馬伯威;李瑞奇;李雁鳴;;播后鎮(zhèn)壓和冬前灌溉對土壤條件和冬小麥生育特性的影響[J];麥類作物學(xué)報(bào);2014年06期
8 趙金輝;楊學(xué)軍;周軍平;劉立晶;楊慧;;播種機(jī)開溝器及其性能測試裝置的現(xiàn)狀分析[J];農(nóng)機(jī)化研究;2014年01期
9 張金波;佟金;馬云海;;仿生減阻深松鏟設(shè)計(jì)與試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年04期
10 蘇彬彬;徐楊;簡建明;;農(nóng)業(yè)機(jī)械耐磨件發(fā)展及研究現(xiàn)狀[J];熱處理技術(shù)與裝備;2013年05期
相關(guān)博士學(xué)位論文 前1條
1 張金波;深松鏟減阻耐磨仿生理論與技術(shù)[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前5條
1 王文君;大豆精密播種機(jī)仿形仿生鎮(zhèn)壓裝置[D];吉林大學(xué);2016年
2 張興旺;水黽腿潤濕性及水黽運(yùn)動特性研究[D];吉林大學(xué);2014年
3 馮猛;仿生起壟鏟降阻特性研究[D];吉林大學(xué);2013年
4 王兆亮;起壟鏟仿生設(shè)計(jì)及其降阻特性分析[D];吉林大學(xué);2009年
5 賈雁冰;中國大豆貿(mào)易研究[D];對外經(jīng)濟(jì)貿(mào)易大學(xué);2006年
,本文編號:1979733
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1979733.html