天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于深度學習的儲糧害蟲檢測方法研究

發(fā)布時間:2018-05-31 08:29

  本文選題:深度學習 + 害蟲檢測 ; 參考:《河南工業(yè)大學》2017年碩士論文


【摘要】:我國是人口大國,糧食生產大國,也是糧食儲藏大國。在儲糧過程中,我國每年的糧食損失約為儲糧總量的0.2%至0.5%,其中由儲糧害蟲危害帶來的損失為50%左右。因此,為了有效減少儲糧害蟲所帶來的損失,糧蟲防治已成為我國糧食安全保障的關鍵技術問題,而糧食害蟲的檢測與識別已成為糧蟲防治的首要環(huán)節(jié)和關鍵問題?v觀國內外儲糧害蟲的研究現(xiàn)狀,有扦樣、引誘、聲測、近紅外、圖像識別等多種方法進行糧蟲的檢測與分類,而圖像識別方法因其具有高識別率、操作簡易、成本低廉等特點而成為糧蟲防治領域的研究熱點和主要技術手段。傳統(tǒng)圖像識別的特征提取大多數(shù)是以人工方式進行的,這種方法存在諸多局限性與不足。同時基于深度學習的圖像識別與分類方法已成為國內外的研究熱點,深度學習通過仿生的方法,用人工神經網絡來模擬人類視覺系統(tǒng),以無監(jiān)督方式自動學習圖像的特征,可顯著提高圖像識別的準確率。本文針對儲糧害蟲檢測問題,探索基于深度學習的糧食害蟲的檢測與識別方法。主要研究工作如下:1.對比人工神經網絡、BP神經網絡等淺層學習的方法,深入系統(tǒng)的研究了稀疏自動編碼器、限制玻爾茲曼機、深度信念網絡、卷積神經網絡等深度學習的方法,分析了卷積神經網絡的模型、結構、算法及應用演變,為基于深度學習的糧蟲圖像的檢測與識別提供了基礎。2.進行甲蟲類(象甲總科、谷盜科)和蝶類(花蝶和黑脈金斑蝶)糧蟲數(shù)據(jù)的采集與相應數(shù)據(jù)庫的制作。設計5層的卷積神經網絡模型(1個輸入層,2個卷積層,2個全連接層),以Sigmoid作為激活函數(shù),以均方誤差(MES)作為損失函數(shù),進行糧蟲圖像的檢測與識別實驗。根據(jù)實驗結果,分析了基于5層的卷積神經網絡模型的糧食害蟲的檢測與識別方法所存在的問題與不足。3.針對小樣本集訓練的模型不具備泛化能力的問題,本文提出了基于圖像扭曲技術的糧食害蟲圖像樣本集構造方法。通過圖像尺度變換、圖像旋轉、圖像彈性扭曲三種圖像增強技術實現(xiàn)糧蟲圖像訓練樣本集的構造,實驗表明,加入圖像扭曲技術的卷積神經網絡,通過訓練所得到的模型具有更強的泛化能力,檢測與識別效果得到了顯著提高。4.針對淺層卷積神經網絡訓練的模型不具備復雜特征表達能力的問題,本文提出了一種基于深度卷積神經網絡模型的糧食害蟲的檢測與識別方法。設計7層的卷積神經網絡模型(1個輸入層,2個卷積層,2個池化層,2個全連接層),以ReLU作為激活函數(shù),以softmax+cross-entropy作為損失函數(shù),采用深度學習Caffe框架實現(xiàn)。糧蟲圖像的檢測與識別實驗表明,所提出方法在不增加訓練代價的基礎上,顯著提高了復雜特征的獲取能力,甲蟲類的檢測分類率高達95%,蝶類的識別率也提高了20%。
[Abstract]:China is a populous country, a large country of grain production, and also a large country of grain storage. In the process of grain storage, the annual grain loss in China is about 0.2% to 0.5% of the total grain stored, and the loss caused by stored grain pests is about 50%. Therefore, in order to effectively reduce the losses caused by stored grain pests, the prevention and control of grain pests has become a key technical issue of grain security in China, and the detection and identification of grain pests has become the most important link and key problem in the control of grain pests. According to the research status of stored grain pests at home and abroad, there are many methods, such as sampling, luring, sound measuring, near infrared, image recognition and so on, to detect and classify grain insects. However, the image recognition method is easy to operate because of its high recognition rate. The characteristics of low cost have become the research hotspot and main technical means in the field of grain pest control. The traditional feature extraction of image recognition is mostly carried out manually, which has many limitations and shortcomings. At the same time, image recognition and classification method based on depth learning has become a hot topic at home and abroad. Through bionic method, depth learning simulates human visual system by artificial neural network, and automatically learns image features in unsupervised way. The accuracy of image recognition can be improved significantly. In this paper, the detection and identification method of grain pests based on deep learning is explored. The main research work is as follows: 1. Compared with the shallow learning methods such as artificial neural network (Ann) and BP neural network (Ann), the methods of deep learning, such as sparse automatic encoder, restricted Boltzmann machine, depth belief network and convolution neural network, are studied systematically. The model, structure, algorithm and application evolution of convolution neural network are analyzed, which provides the basis for the detection and recognition of grain insect image based on deep learning. In this paper, the data collection of beetles (Elephantae, Graconidae) and butterflies (flower butterflies and black-necked butterflies) were carried out, and the corresponding database was made. A five-layer convolution neural network model (one input layer, two convolution layers, two fully connected layers) was designed to detect and identify the grain insect images using Sigmoid as the activation function and MSE as the loss function. Based on the experimental results, the problems and shortcomings of the method of detection and identification of grain pests based on the five-layer convolution neural network model are analyzed. Aiming at the problem that the training model of small sample set does not have generalization ability, a method of constructing image sample set of grain pests based on image distortion technique is proposed in this paper. Three kinds of image enhancement techniques such as image scale transformation, image rotation and image elastic distortion are used to construct the training sample set of grain worm image. The experiment shows that the convolution neural network is added to the image distortion technology. The model obtained by training has stronger generalization ability, and the detection and recognition effect is improved significantly. 4. Aiming at the problem that the training model of shallow convolution neural network does not have the ability to express complex features, a method of detecting and identifying grain pests based on deep convolution neural network model is proposed in this paper. Seven layers of convolution neural network model (1 input layer, 2 convolution layer, 2 pool layer, 2 fully connected layer, ReLU as activation function, softmax cross-entropy as loss function and depth learning Caffe framework) are designed. The experiments on the detection and recognition of grain insect images show that the proposed method can significantly improve the ability to acquire complex features without increasing the training cost. The detection and classification rate of beetles is as high as 95 percent, and the recognition rate of butterflies is also increased by 20 percent.
【學位授予單位】:河南工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S379.5;TP391.41

【參考文獻】

相關期刊論文 前10條

1 張紅濤;李芳;胡玉霞;張恒源;;倉儲害蟲局部形態(tài)學特征提取方法研究[J];河南農業(yè)科學;2014年02期

2 程小麗;武傳欣;劉俊明;遲瑩;魏慶偉;;儲糧害蟲防治的研究進展[J];糧食加工;2011年05期

3 萬拯群;萬平;;我國科學保糧若干問題之我見[J];糧食儲藏;2009年04期

4 周龍;黃凌霄;牟懌;方明;;數(shù)學形態(tài)學方法在儲糧害蟲圖像預處理中的應用[J];華中科技大學學報(自然科學版);2008年02期

5 周龍;牟懌;;二維小波變換在糧蟲圖像處理中的應用[J];華中科技大學學報(自然科學版);2007年08期

6 甄彤;范艷峰;;基于支持向量機的儲糧害蟲分類識別技術研究[J];計算機工程;2006年09期

7 范艷峰,甄彤;谷物害蟲檢測與分類識別技術的研究及應用[J];計算機工程;2005年12期

8 張紅梅,范艷峰,田耕;基于數(shù)字圖像處理技術的儲糧害蟲分類識別研究[J];河南工業(yè)大學學報(自然科學版);2005年01期

9 甄彤,范艷峰,鄒炳強,唐建國;谷物害蟲圖像識別中特征值提取技術的研究[J];微電子學與計算機;2004年12期

10 邱道尹,張成花,張紅濤,沈憲章,岳永娟;神經網絡在儲糧害蟲識別中的應用[J];農業(yè)工程學報;2003年01期

相關碩士學位論文 前4條

1 張衛(wèi)芳;基于圖像處理的儲糧害蟲檢測方法研究[D];陜西師范大學;2010年

2 牟懌;基于圖像處理的儲糧害蟲檢測方法研究[D];武漢工業(yè)學院;2009年

3 張紅濤;儲糧害蟲圖像識別中的特征抽取研究[D];鄭州大學;2002年

4 張成花;基于圖像識別的儲糧害蟲分類的研究[D];鄭州大學;2002年



本文編號:1958968

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1958968.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶0b993***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com