太陽能自主航行增氧船的設(shè)計(jì)與研究
本文選題:無人艇 切入點(diǎn):GPS導(dǎo)航 出處:《安徽工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本文在分析當(dāng)前無人艇和增氧機(jī)發(fā)展現(xiàn)狀的基礎(chǔ)上,設(shè)計(jì)了一種可自主航行的太陽能增氧船,該型增氧船不僅可以增大單體增氧機(jī)的增氧范圍,而且可以改善水體環(huán)境。太陽能電池板的使用解決了該型增氧船用電不便利的問題并且節(jié)能、環(huán)保和節(jié)約成本。根據(jù)設(shè)計(jì)的增氧船所要完成的功能進(jìn)行相關(guān)電子模塊的選擇和設(shè)置,其中主要對(duì)Raspberry Pi控制模塊的串口和GPS導(dǎo)航模塊的頻率及波特率等進(jìn)行設(shè)置。接著通過實(shí)際檢測(cè)各個(gè)模塊的性能和使用要求。研究的太陽能自主航行增氧船與傳統(tǒng)機(jī)械式增氧機(jī)的作業(yè)方式不同,該型增氧船可以自主導(dǎo)航增氧,因此太陽能自主航行增氧船的結(jié)構(gòu)設(shè)計(jì)關(guān)系到該型增氧船能否提供足夠的浮力,選擇的電機(jī)能否提供足夠的扭矩等。該型太陽能自主航行增氧船以雙體船為船體,以水車式增氧機(jī)作為增氧裝置及驅(qū)動(dòng)裝置。研究的無人艇按規(guī)定航跡巡航制導(dǎo)算法為太陽能自主航行增氧船的研究奠定控制基礎(chǔ)。為了實(shí)現(xiàn)無人艇按規(guī)定航跡巡航,先對(duì)GPS采集到的數(shù)據(jù)進(jìn)行提取和分析并且將經(jīng)緯度坐標(biāo)通過墨卡托投影轉(zhuǎn)換成直角坐標(biāo),則根據(jù)航行水域環(huán)境可直接規(guī)劃航行路徑。根據(jù)設(shè)計(jì)要求提出了適合本文無人艇的直線制導(dǎo)算法和轉(zhuǎn)彎制導(dǎo)算法。基于無人艇按規(guī)定航跡巡航制導(dǎo)算法研究的基礎(chǔ),提出適合本文設(shè)計(jì)的太陽能自主航行增氧船的兩種控制算法?刂扑惴ㄒ:漫巡航增氧即太陽能自主航行增氧船的航行不需要規(guī)劃航跡且檢測(cè)到障礙物可轉(zhuǎn)向,具體的運(yùn)動(dòng)方式為:增氧船能沿著某一方向保持直線行駛且遇到障礙物轉(zhuǎn)彎,轉(zhuǎn)彎完成后再沿著某一方向直線行駛;控制算法二:太陽能自主航行增氧船按規(guī)定航跡巡航增氧。最后本文以設(shè)計(jì)的增氧船為原型組建了一艘增氧樣船,該增氧樣船在控制算法下能夠?qū)崿F(xiàn)自主航行。設(shè)計(jì)的增氧船雖然實(shí)現(xiàn)了自主航行控制的要求同時(shí)也能夠體現(xiàn)出增氧的功能,但是該型增氧船在小水域中明輪轉(zhuǎn)速改變較頻繁,因此在小水域中增氧效果相對(duì)大水域較弱。針對(duì)小水域增氧效果減弱問題,設(shè)計(jì)了一種通過舵機(jī)控制航向的舵機(jī)增氧船,該型增氧船的明輪轉(zhuǎn)速始終保持最大轉(zhuǎn)速來保證增氧效果。
[Abstract]:Based on the analysis of the current development of unmanned craft and oxygenator, this paper designs a solar oxygen-enhancing ship which can sail independently. The oxygen-increasing vessel can not only increase the oxygen-increasing range of single oxygenator, but also increase the oxygen-increasing range. And it can improve the water environment. The use of solar panels has solved the problem of inconveniences in the use of electricity for this type of oxygen-enhancing ship and saved energy. Environmental protection and cost saving. According to the functions of the designed oxygen-increasing ship, the selection and setting of related electronic modules are carried out. The frequency and baud rate of the serial port and GPS navigation module of Raspberry Pi control module are mainly set. Then, the performance and application requirements of each module are tested. Mechanical oxygenator operates in different ways, This type of oxygenator can be independently navigated to increase oxygen, so the structure design of the solar independent navigation oxygenator is related to whether the type of oxygenator can provide sufficient buoyancy. Whether the selected motor can provide sufficient torque and so on. This type of solar autonomous navigation oxygenator ships with catamaran as the hull, The waterwheel oxygenator is used as the oxygen-increasing device and the driving device. The cruise guidance algorithm of the unmanned craft according to the prescribed track lays the control foundation for the research of the solar autonomous oxygen-increasing ship. In order to realize the unmanned boat cruising according to the prescribed track, Firstly, the data collected by GPS are extracted and analyzed, and the longitude and latitude coordinates are transformed into Cartesian coordinates through Mercator projection. According to the navigation environment, the navigation path can be directly planned. According to the design requirements, a linear guidance algorithm and a turn guidance algorithm are proposed for the unmanned craft in this paper. In this paper, two control algorithms for solar autonomous navigation oxygenator are proposed. The control algorithms are as follows: first, the cruise oxygen-increasing ship does not need to plan the track and detect obstacles to turn. The specific motion methods are as follows: the oxygen-increasing ship can keep a straight line along a certain direction and meet with obstacles to turn, and then follow a straight line after the completion of the turn; Control algorithm two: the solar independent navigation oxygen-enhancing ship cruises to increase oxygen according to the prescribed track. Finally, a oxygen-enhancing sample ship is constructed based on the designed oxygen-enhancing vessel. The oxygen-increasing vessel can sail independently under the control algorithm. Although the designed oxygen-increasing vessel can fulfill the requirements of autonomous navigation control and embody the function of oxygen-increasing, the speed of the open wheel of this type of oxygen-increasing vessel changes frequently in small waters. Therefore, the oxygen-increasing effect in small water area is weaker than that in large water area. Aiming at the problem of weakening oxygen-increasing effect in small water area, a steering gear oxygen-increasing ship controlled by steering gear is designed. The open wheel speed of this type oxygenator always keeps maximum speed to ensure the oxygenation effect.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S969.323
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田昌鳳;劉興國(guó);張擁軍;鄒海生;時(shí)旭;車軒;;移動(dòng)式太陽能增氧機(jī)的研制[J];農(nóng)業(yè)工程學(xué)報(bào);2015年19期
2 王瑋;;射流式增氧機(jī)標(biāo)準(zhǔn)參數(shù)檢測(cè)分析[J];中國(guó)漁業(yè)質(zhì)量與標(biāo)準(zhǔn);2015年05期
3 趙三琴;劉昊一;丁為民;湯永祥;李毅念;;魚塘增氧控制系統(tǒng)的研制與試驗(yàn)[J];南京農(nóng)業(yè)大學(xué)學(xué)報(bào);2015年04期
4 陸佳偉;;UTM投影和高斯-克呂格投影及其變換實(shí)現(xiàn)[J];交通世界(工程技術(shù));2015年04期
5 吳宗凡;程果鋒;王賢瑞;劉興國(guó);張擁軍;鄒海生;唐榮;;移動(dòng)式太陽能增氧機(jī)的增氧性能評(píng)價(jià)[J];農(nóng)業(yè)工程學(xué)報(bào);2014年23期
6 顧海濤;王逸清;;我國(guó)池塘增氧技術(shù)現(xiàn)狀與發(fā)展趨勢(shì)[J];漁業(yè)現(xiàn)代化;2014年05期
7 吳晨;王海燕;駱建波;房振魯;;太陽能移動(dòng)式水體增氧裝置的設(shè)計(jì)與試驗(yàn)[J];漁業(yè)現(xiàn)代化;2014年04期
8 呂海新;;淡水水產(chǎn)養(yǎng)殖中機(jī)械增氧技術(shù)的應(yīng)用分析[J];農(nóng)業(yè)與技術(shù);2014年07期
9 馬天宇;楊松林;王濤濤;辛磊;陳q,
本文編號(hào):1594563
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1594563.html