旋流式射流泵裝置性能研究
本文選題:旋流式射流泵 切入點:性能 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:我國作為一個水資源區(qū)域分布不均勻且嚴(yán)重缺水的國家,河床水位與地下水水位逐年下降,導(dǎo)致很多地區(qū)水位距離地面的高度差達(dá)到8m以上。射流泵裝置作為一種高吸程抽水裝置,其吸程可達(dá)數(shù)十米,具有工作可靠、維修便捷、成本低廉以及在缺電環(huán)境下能通過其它動力運行等優(yōu)點,但由于自身工作原理的特點,其裝置性能較差,運行效率偏低。因此,本文對射流泵結(jié)構(gòu)提出改進(jìn),設(shè)計了一種固定導(dǎo)葉型旋流式射流泵,并對其裝置性能進(jìn)行研究,以達(dá)到提升射流泵裝置性能的目的,主要研究內(nèi)容有:(1)理論分析旋動射流的速度和壓力衰減特性以及其卷吸能力和摻混作用,并將旋動射流理論應(yīng)用于射流泵中,設(shè)計一種固定導(dǎo)葉型旋流式射流泵。結(jié)果表明,工作水為弱旋動射流的射流泵內(nèi),其徑向和軸向的速度以及壓力比工作水為強(qiáng)旋動射流時擴(kuò)散衰減得更慢,其卷吸能力和摻混作用則比無旋動射流強(qiáng)很多,有助于提升射流泵裝置的提水性能。將旋動射流理論與射流泵裝置的基本原理相結(jié)合,采用圓柱坐標(biāo)設(shè)計方法,確定旋流式射流泵的固定導(dǎo)葉數(shù)z=2,導(dǎo)葉高度hv=100mm,工作水入流角α=40°,導(dǎo)葉厚度d1=1mm,導(dǎo)葉寬度d2=10mm。完成旋流式射流泵的初步結(jié)構(gòu)設(shè)計。(2)選擇面積比m分別為4.37、3.13和2.35的旋流式射流泵和與之面積比相對應(yīng)的無旋射流泵進(jìn)行試驗對比研究。結(jié)果表明,選定面積比中,旋流式射流泵最優(yōu)面積比2.35,小于無旋射流泵最優(yōu)面積比3.13,即旋流式射流泵最優(yōu)面積比有減小趨勢;旋流式射流泵裝置處于高效運行區(qū)時的流量比范圍大于無旋射流泵裝置;相同面積比下,且運行工況相同時,旋流式射流泵的壓力損失較小,性能較優(yōu),表現(xiàn)為其壓力比最高能夠提高0.01,相當(dāng)于無旋射流泵壓力比的5%~10%,其裝置效率最高能夠提高4%,相當(dāng)于無旋射流泵裝置效率的25%左右。(3)研究確定一種數(shù)值模擬方法,并采用此方法對不同面積比的旋流式射流泵和無旋射流泵的內(nèi)部流動進(jìn)行對比分析。結(jié)果表明,與無旋射流泵相比,在相同面積比下,旋流式射流泵的壓力損失較小,且其面積比越小,壓力損失越小;旋流式射流泵的工作水速度在流經(jīng)噴嘴之前有所增加,混合水經(jīng)噴嘴噴出后,在喉管和擴(kuò)散管段內(nèi)中心速度的衰減更慢,且面積比越小,其中心速度的衰減越慢;無旋射流泵在擴(kuò)散管出口與直管段連接處形成明顯的回流漩渦,而旋流式射流泵的內(nèi)部流動則很流暢。數(shù)值模擬結(jié)果與試驗分析結(jié)果相符,旋流式射流泵的壓力比和效率相比無旋射流泵都有所提高。(4)基于CFD,以旋流式射流泵的壓力比和效率作為試驗指標(biāo),采用四因素三水平的正交試驗方案,通過極差分析和方差分析,對旋流式射流泵的結(jié)構(gòu)尺寸進(jìn)行優(yōu)化,并研究其結(jié)構(gòu)尺寸對試驗指標(biāo)的影響規(guī)律。結(jié)果表明:面積比對兩個指標(biāo)的影響都很顯著,固定導(dǎo)葉數(shù)、導(dǎo)葉高度和工作水入流角對兩個指標(biāo)的影響都很弱,尤其導(dǎo)葉高度的影響最弱;確定了裝置性能較優(yōu)的旋流式射流泵結(jié)構(gòu)尺寸方案。
[Abstract]:China as a regional water resource distribution is uneven and the serious water shortage in the country, the river water level and groundwater level decreased year by year, resulting in many areas of the height difference of the water level from the ground up to 8m. Jet pump device as a high lift pumping device, the suction up to tens of meters, with reliable work, convenient maintenance. Low cost and shortage in the environment through other dynamic operation and other advantages, but because of the characteristics of the working principle of the device, its performance is poor, low efficiency. Therefore, this paper puts forward improvement on the structure of jet pump, design a fixed guide vane type swirl jet pump, and studied on the device performance, to to improve the performance of jet pump, the main research contents are as follows: (1) the theoretical analysis of the speed and pressure of swirling jet attenuation and its entrainment ability and mixing effects, and the jet theory Applied to the jet pump, the design of a fixed guide vane type swirl jet pump. The results show that the water jet pump weak swirling jets in the radial and axial velocity and pressure of water than strong swirling jet diffusion decay more slowly, the entrainment and mixing ability than in mixed cropping no swirling jet a lot stronger, can help improve the performance of water jet pump lifting device. The basic principle of swirling jet theory and jet pump combined with cylindrical coordinate design method, determine the swirl jet pump vane vane number z=2, height hv=100mm, work flow angle of =40 degrees into the water the guide vane, the thickness of d1=1mm, the preliminary structure design of guide vane width d2=10mm. complete swirl jet pump. (2) choose the area ratio of m were swirling jet pump and 2.35 4.37,3.13 and the area ratio corresponding to the irrotational jet pump was studied. The test results show that the selected Fixed area ratio, swirl jet pump optimal area ratio is less than 2.35, no rotary jet pump optimal area ratio of 3.13, namely the swirl jet pump optimal area ratio decreased; swirl jet pump device in the efficient operation when the flow ratio range is greater than non swirling jet pump device; the same area ratio, and operation conditions are the same, the swirl jet pump with low pressure loss, better performance, as its highest pressure ratio can be increased by 0.01, equivalent to a 5%~10% rotary jet pump pressure ratio, the device can improve the efficiency is the highest of 4%, equivalent to about the efficiency of irrotational jet pump 25%. (3) a numerical study on the simulation method of determining, by using the method of comparative analysis of swirl jet pump with different area ratio and irrotational jet pump internal flow. The results show that, compared with the non rotating jet pump, in the same area ratio, pressure loss of swirling jet pump The loss is small, and the area ratio is smaller, the pressure loss is small; the water velocity in the swirling jet pump increased in the flow through the nozzle, mixing water nozzle, velocity attenuation in the throat and diffuser pipe more slowly, and the area is smaller, the center velocity attenuation is slow; no rotary jet pump in the diffuser outlet formed obvious refluxing swirl and straight pipe joints, and internal flow of swirl jet pump is very smooth. The numerical simulation results and experimental results consistent with the swirl jet pump pressure ratio and efficiency compared to irrotational jet pump are improved. (4) based on CFD. The swirl jet pump pressure ratio and efficiency as the test index, orthogonal experiments of four factors and three levels, through variance analysis, the structure size of the cyclone jet pump were optimized, and study the structural dimensions of the test index The influence of area ratio. The results show that the effect of the two indicators are significant, the number of fixed guide vanes, vane height and water influence of inflow angle on the two indexes are very weak, especially the influence of guide vane height to determine the weakest; swirl jet pump device with better performance of structure size plan.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S277.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;2020年農(nóng)田有效灌溉面積將達(dá)10億畝[J];種業(yè)導(dǎo)刊;2016年02期
2 ;關(guān)于印發(fā)《全國農(nóng)業(yè)可持續(xù)發(fā)展規(guī)劃(2015—2030年)》的通知[J];中華人民共和國農(nóng)業(yè)部公報;2015年06期
3 趙雪岑;王金濤;劉松亞;劉立志;;射流泵水力特性優(yōu)化設(shè)計研究[J];核動力工程;2014年04期
4 沙毅;;旋流泵性能及內(nèi)部流場試驗分析[J];農(nóng)業(yè)工程學(xué)報;2011年04期
5 許瑞;杜長龍;曾銳;張佳佳;;不同收縮角噴嘴的射流仿真研究[J];礦山機(jī)械;2011年02期
6 劉萍;張東速;;噴嘴幾何參數(shù)對射流流場性能影響的計算研究[J];機(jī)械設(shè)計;2007年11期
7 王常斌;林建忠;石興;;射流泵湍流場的數(shù)值模擬與實驗研究[J];高;瘜W(xué)工程學(xué)報;2006年02期
8 顧磊;張景松;楊春敏;;汽蝕工況液體射流泵的實驗研究[J];流體機(jī)械;2006年02期
9 常洪軍;朱熠;;液體射流泵內(nèi)部三維流場的數(shù)值模擬[J];排灌機(jī)械;2005年06期
10 李桂娥;;淺析我國噴灌技術(shù)的發(fā)展對策[J];山西農(nóng)業(yè)大學(xué)學(xué)報(社會科學(xué)版);2005年04期
相關(guān)博士學(xué)位論文 前1條
1 袁丹青;多噴嘴射流泵流場的數(shù)值模擬及試驗研究[D];江蘇大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 張淑榮;氣流式霧化噴嘴的特性研究[D];大連理工大學(xué);2006年
,本文編號:1591513
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1591513.html