天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

利用轉(zhuǎn)基因聚合創(chuàng)造高淀粉、高直鏈淀粉玉米新種質(zhì)

發(fā)布時間:2018-02-01 04:10

  本文關(guān)鍵詞: 玉米 AGPase GBSSI SBEIIRNAi ae突變體 轉(zhuǎn)基因 高淀粉 高直鏈淀粉 出處:《山東大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:玉米是世界第一大作物,其籽?勺鳛榧Z食、飼料和工業(yè)原料,淀粉含量和品質(zhì)是決定玉米經(jīng)濟(jì)價值的重要因子。高淀粉玉米工業(yè)價值高,可提高單位面積上的玉米產(chǎn)值;高直鏈淀粉玉米可應(yīng)用于產(chǎn)生高直鏈淀粉,后者是食品包裝薄膜、可降解塑料等產(chǎn)品的原料。因此,通過傳統(tǒng)育種或轉(zhuǎn)基因的方式獲得高淀粉與高直鏈淀粉玉米的研究具有十分重要的意義。本實驗室前期研究表明:將Sh2r6hs基因和Bt2基因同時轉(zhuǎn)入不同的玉米自交系中,與對照相比轉(zhuǎn)基因材料的總淀粉含量、直鏈淀粉含量及百粒重都顯著增加。過量表達(dá)ZmWx基因同樣能夠提高轉(zhuǎn)基因過表達(dá)玉米的淀粉含量及百粒重。通過RNAi技術(shù)同時抑制玉米骨干自交系昌7-2中SBEIIb、SBEIIa基因表達(dá),測得直鏈淀粉含量由對照的28%增加到50%以上,但總淀粉含量降低,由對照的66%降到60%以下。轉(zhuǎn)基因玉米胚乳淀粉粒及傳遞細(xì)胞的觀察為研究以上轉(zhuǎn)基因玉米淀粉含量和籽粒大小變化的原因,通過常規(guī)石蠟切片法制片,PAS反應(yīng)(Periodic acid Schiff reaction)顯色或甲苯胺藍(lán)-O染色,光學(xué)顯微鏡下觀察了淀粉粒、傳遞細(xì)胞和淀粉含量的變化。利用掃描電鏡觀察了以上轉(zhuǎn)基因材料粉質(zhì)胚乳的中心處的淀粉粒形態(tài)、大小,并測量了淀粉粒直徑。通過石蠟切片觀察得出,Sh2r6hsBt2基因過表達(dá)玉米、ZmWx基因過表達(dá)玉米胚乳中的淀粉粒要明顯多于對照,sBEIIRNAi轉(zhuǎn)基因玉米胚乳中的淀粉粒要明顯少于對照;而傳遞細(xì)胞未發(fā)生明顯變化。通過掃描電鏡觀察得出,Sh2r6hsBt2過表達(dá)材料、ZmWx過表達(dá)材料的淀粉粒直徑的分布范圍和平均值均大于受體自交系的;與對照相比,以昌7-2為受體的轉(zhuǎn)SBEIIRNAi結(jié)構(gòu)的玉米淀粉粒表面出現(xiàn)不規(guī)則的塌陷或凹陷;且從淀粉粒直徑分布來看,轉(zhuǎn)SBEIIRNAi結(jié)構(gòu)的株系明顯降低了直徑在8-13μm的淀粉粒比例。因此,轉(zhuǎn)Sh2r6hsBt2基因玉米、轉(zhuǎn)ZmWx基因玉米、轉(zhuǎn)SBEIIRNAi結(jié)構(gòu)玉米的淀粉含量及籽粒大小的改變,與淀粉粒的數(shù)量及大小變化相對應(yīng),但是與傳遞細(xì)胞數(shù)量的變化沒有明顯的關(guān)系,表明Sh2r6hsBt2基因、ZmWx基因過表達(dá)主要使AGPase、GBSSI酶活性提高,合成淀粉的效率提高;而SBEIIRNAi結(jié)構(gòu)使SBEII酶活性降低,影響淀粉的合成。GBSSI過表達(dá)玉米與轉(zhuǎn)突變型AGPase玉米的雜交對直鏈淀粉含量的影響鄭58、昌7-2是兩個優(yōu)良自交系,二者具有很好的配合力,鄭單958即為以鄭58為母本、昌7-2為父本組配的雜交種。本實驗將編碼GBSSI的ZmWx基因過表達(dá)玉米與編碼突變型AGPase的Sh2r6hsBt2基因過表達(dá)玉米進(jìn)行雜交,且突變型AGPase轉(zhuǎn)基因玉米來自昌7-2,GBSSI轉(zhuǎn)基因玉米來自鄭58,以期培育出總淀粉含量和直鏈淀粉高的轉(zhuǎn)基因鄭單958,了解其在農(nóng)業(yè)生產(chǎn)上的應(yīng)用價值。實驗對轉(zhuǎn)基因聚合玉米進(jìn)行了總淀粉含量、直鏈淀粉含量的測定,并對籽粒性狀、果穗性狀、百粒重、產(chǎn)量進(jìn)行了分析。與對照雜交材料相比,轉(zhuǎn)基因聚合材料的淀粉、直鏈淀粉含量提高,株高、穗位高沒有明顯變化,但穗長、行粒數(shù)、百粒重、單株產(chǎn)量增加。以鄭58為母本的聚合材料,單株產(chǎn)量由非轉(zhuǎn)基因鄭單958的169.4 ± 6.23g增加到200.0 ± 4.56g。因此,轉(zhuǎn)基因雜交種與對照雜交種相比既提高了淀粉含量,又增加了直鏈淀粉含量,且轉(zhuǎn)基因雜交種與對照雜交種相比單株產(chǎn)量顯著增加,百粒重增加和果穗籽粒數(shù)增多共同引起單株產(chǎn)量的增加。將該種子應(yīng)用于農(nóng)業(yè)生產(chǎn),可明顯提高玉米產(chǎn)量,增加農(nóng)民的收益。ae突變體材料與不同轉(zhuǎn)基因材料的雜交分析為了能夠培育出高直鏈淀粉玉米新種質(zhì),本實驗將ae突變體玉米分別與轉(zhuǎn)SBEIIRNAi結(jié)構(gòu)玉米、突變型AGPase過表達(dá)玉米、ZmWx基因過表達(dá)玉米雜交。測定了轉(zhuǎn)基因聚合種子淀粉、直鏈淀粉的含量。淀粉含量測定結(jié)果表明,昌7-2背景下ae突變體的直鏈淀粉含量達(dá)到56.9%,鄭58背景下ae突變體的直鏈淀粉含量達(dá)到55.1%,ae突變體與轉(zhuǎn)SBEIIRNAi結(jié)構(gòu)聚合玉米的直鏈淀粉含量除兩個較特殊的外最高達(dá)33.9%。ae突變體與ZmWx基因過表達(dá)聚合玉米的直鏈淀粉含量最高達(dá)37.1%;與轉(zhuǎn)突變型AGPase基因聚合玉米的直鏈淀粉含量也明顯低于親本ae突變體。且以ae突變體為母本的聚合材料直鏈淀粉含量要高于以轉(zhuǎn)基因玉米為母本的,表現(xiàn)出母本效應(yīng)。由以上結(jié)果得出,轉(zhuǎn)基因聚合種子直鏈淀粉含量沒有提高,反而明顯低于親本ae突變體,可能是轉(zhuǎn)基因聚合種子的胚乳中,存在野生型SBEⅡb基因?qū)е碌。由于時間關(guān)系,尚未得到聚合ae基因的純合材料。轉(zhuǎn)AGPase基因和轉(zhuǎn)突變型AGPase基因株系的雜交聚合本實驗將Sh2Bt2過表達(dá)玉米與Sh2r6hsBt2過表達(dá)玉米雜交,增加AGPase大亞基的雜合性,嘗試能否進(jìn)一步提高玉米淀粉含量。對轉(zhuǎn)基因聚合玉米的淀粉含量、百粒重進(jìn)行了測定,并且對果穗、籽粒進(jìn)行了表型分析。實驗結(jié)果表明,以Sh2Bt2基因過表達(dá)玉米為母本的聚合材料淀粉含量達(dá)到76.7%、78.6%,百粒重為 24.9±1.74g、26.2±0.65g;以Sh2r6hsBt 基因過表達(dá)玉米為母本的聚合材料淀粉含量達(dá)到78.0%、81.1%,百粒重為26.7 ±0.51g、27.9±0.60g;均高于親本。由以上結(jié)果可知,Sh2Bt2基因過表達(dá)植株與Sh2r6hsBt2基因過表達(dá)植株雜交,產(chǎn)生的種子具有增加的淀粉含量和百粒重,與親本相比差異達(dá)到顯著水平。通過籽粒、果穗的表型分析,轉(zhuǎn)基因聚合材料的籽粒變大、果穗變大。綜上所述,本論文通過觀察不同轉(zhuǎn)基因玉米淀粉粒、傳遞細(xì)胞和淀粉含量的變化,得出淀粉含量的變化與淀粉粒的數(shù)量及大小變化相對應(yīng),但與傳遞細(xì)胞沒有明顯的關(guān)系。將不同自交系的GBSSI過表達(dá)材料與突變型AGPase過表達(dá)材料進(jìn)行雜交,培育出總淀粉含量和直鏈淀粉高的轉(zhuǎn)基因玉米材料。ae突變體玉米與不同轉(zhuǎn)基因玉米的雜交,雖未得到聚合ae基因的純合材料,聚合種子的直鏈淀粉含量低于親本,但這為高直鏈淀粉玉米新種質(zhì)的創(chuàng)制提供了思路。轉(zhuǎn)野生型AGPase基因和轉(zhuǎn)突變型AGPase基因株系的雜交,聚合種子與親本相比具有增加的淀粉含量和百粒重。以上研究,為轉(zhuǎn)基因高淀粉、高直鏈淀粉玉米的研究提供了策略和方法,選育的高淀粉、高直鏈淀粉材料具有一定的應(yīng)用前景。
[Abstract]:Corn is the world's largest crop, the grain can be used as food, feed and industrial raw materials, the content and quality of starch is an important factor in determining the economic value of corn. High starch corn industry value is high, can improve the unit area of corn production; high amylose maize can be applied to produce high amylose starch, which is food packaging film, degradable plastic products such as raw materials. Therefore, high starch and high amylose corn straight research has very important significance to get through traditional breeding or transgenic approaches. Our previous studies showed that the Sh2r6hs gene and the Bt2 gene into different maize inbred lines, compared with the total starch content transgenic materials, amylose content and 100 grain weight increased significantly. Overexpression of ZmWx can improve the expression of transgenic maize starch content and 100 grain weight by RNAi. At the same time, inhibition technology of maize inbred line 7-2 Chang SBEIIb, SBEIIa gene expression, measured amylose content by 28% of the control increased to more than 50%, but the total starch content decreased from 66% in the control below 60%. Due to the above research on genetically modified maize starch content and grain size of the changes of genetically modified corn starch particle and transfer cells, by conventional paraffin method, the reaction of PAS (Periodic acid Schiff reaction) color or toluidine blue -O staining under optical microscope the changes of starch grains, transfer cells and starch content were observed. At the center of the above transgenic material powder endosperm starch grain morphology by scanning electron microscopy, size and the starch grain diameter was measured. Paraffin sections through the observation that the over expression of Sh2r6hsBt2 gene of maize ZmWx gene over expression of starch grains in maize endosperm were significantly more than the control SBEIIRNAi, the starch grains in the endosperm of transgenic corn is significantly less than the control; while the transfer cells did not change significantly. By using scanning electron microscope showed that the overexpression of Sh2r6hsBt2, ZmWx over expression of starch granule size distribution range of the materials and the average values were greater than the recipient inbred line; compared with the control, in order to Chang 7-2. SBEIIRNAi the structure of the receptor of corn starch granules appear on the surface of irregular subsidence or depression; and from the starch granule size distribution, structure of transgenic SBEIIRNAi lines was significantly reduced starch in 8-13 m particle diameter ratio. Therefore, Sh2r6hsBt2 transgenic maize, ZmWx transgenic maize, transgenic SBEIIRNAi maize starch content and grain structure size changes, corresponding changes in the number and size of starch grains, but no significant relationship with the change of the number of transfer cells, suggesting that the Sh2r6hsBt2 gene, ZmWx gene expression mainly The AGPase, increased GBSSI activity, improve the efficiency of the synthesis of starch; and the SBEIIRNAi structure of the enzymatic activity of SBEII decreased, affecting the synthesis of.GBSSI starch and the effect of overexpression of mutant AGPase Transgenic Maize Hybrid Maize on amylose content of Zheng 58, Chang 7-2 is the two inbred lines, two with force well, Zhengdan 958 is to Zheng 58 as female parent and hybrid male parent Chang 7-2 group. The ZmWx gene encoding the GBSSI expression of Sh2r6hsBt2 gene in maize and encoding mutant AGPase overexpression of Maize Hybrid and mutant AGPase transgenic maize from Chang 7-2, GBSSI transgenic maize from Zheng 58, in order to cultivate a total starch content and amylose of transgenic Zhengdan 958, understand its application value in agricultural production. Experiment of total starch content of transgenic maize determined polymerization, amylose content, and seed Grain traits, ear traits, 100 grain weight and yield were analyzed. Compared with the control of hybrid materials, polymeric materials genetically modified starch, amylose content increased, plant height, ear height did not change significantly, but the panicle length, grain number, grain weight, yield per plant increased by 58 for the polymerization of Zheng. The parent material, the yield from non transgenic Zhengdan 958 increased to 169.4 + 6.23g 200 + 4.56g. therefore, transgenic hybrid and hybrid control compared to both improved and increased starch content, amylose content, and transgenic hybrid and hybrid control compared to the yield per plant increased significantly, 100 grain weight was increased and the number of ear kernels due to the increased yield per plant. The seeds used in agricultural production, can significantly increase the yield of maize, increase farmer's income.Ae mutant materials and different transgenic materials hybridization analysis in order to be able to produce high straight The new germplasm of amylose maize, the maize AE mutant and transgenic SBEIIRNAi maize respectively, the overexpression of AGPase gene in maize, overexpression of ZmWx gene. The transgenic maize hybrid seed polymerization determination of starch and amylose content were measured. The results showed that the starch content, under the background of Chang 7-2 AE mutant amylose content reached 56.9%, Zheng 58 under the background of the AE mutant amylose content reached 55.1%, AE mutant and transgenic SBEIIRNAi structure polymerization of corn amylose content in addition to the two special outside up to 33.9%.ae mutant and ZmWx gene over expression of amylose content in polymerization of corn up to 37.1%; the amylose content of maize and turn the mutant AGPase gene pyramiding is lower than that of the parental AE mutants. And as the female parent polymer amylose content was higher than that in female transgenic maize with AE mutants showed a parent This effect is obtained by the above results, the transgenic seed polymerization of amylose content was not increased, but significantly lower than the parental AE mutants may be genetically modified seed endosperm polymerization in the presence of wild-type B gene leads to SBE II. Because of the time, has not yet been polymerized ae gene homozygous transgenic AGPase and hybrid materials. Transgenic mutant AGPase strains of the polymerization of this experiment will be over expression of Sh2Bt2 and overexpression of Sh2r6hsBt2 in Maize Hybrid Maize, increase of AGPase large subunit of heterozygosity, try can improve the content of corn starch. The starch content of transgenic corn polymerization, 100 grain weight was measured, and the ear, grain of phenotype analysis. The experimental results show that Sh2Bt2 overexpression of corn starch content in female polymeric materials reached 76.7%, 78.6%, 100 grain weight was 24.9 + 1.74g, 26.2 + 0.65g; Sh2r6hsBt gene over expression As for the corn starch content of female polymeric materials reached 78%, 81.1%, 100 grain weight was 26.7 + 0.51g, 27.9 + 0.60g; both were higher. The results above indicated that over expression of Sh2Bt2 gene and Sh2r6hsBt2 gene expression of plant hybrids, produce seeds with starch content increased and 100 grain weight, and compared to the parents there were significant differences. Through the analysis of ear of grain, the grain of transgenic phenotype, polymeric material becomes larger, the ear became large. To sum up, through the observation of different genetically modified corn starch grains, the change of transfer cells and starch content, the size and number of changes in the starch grains that starch content should be relative, but no obvious relationship between the transfer cells. Different inbred lines GBSSI overexpression of mutated AGPase expression materials and materials produced transgenic maize hybrids, total starch content and amylose high .ae mutants of Maize with different transgenic maize hybrids, has not yet been homozygous polymerization of AE gene, amylose content were lower than that of the seed polymerization, but the high amylose maize germplasm creation directly provides ideas. Hybridization of wild type AGPase gene and AGPase gene mutant strain. And compared with the parent seed polymerization of starch content increased and 100 grain weight. The above research, transgenic high starch, provides strategies and methods for the study of high amylose maize, high starch breeding, high amylose starch material has a certain application prospect.

【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S513

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙思孟;;玉米裂紋與干燥、冷卻的關(guān)系[J];糧食儲藏;2007年01期

2 王曉麗,劉志剛;特用型玉米[J];吉林農(nóng)業(yè);2000年01期

3 白巖;趙思孟;;玉米裂紋及其檢測[J];糧食儲藏;2006年04期

4 黃萬松;;玉米儲存過程中減少破碎率的幾點措施[J];現(xiàn)代農(nóng)業(yè);2006年08期

5 白巖;趙思孟;;玉米裂紋及其檢測[J];糧食儲藏;2006年04期

6 高玉峰;張攀;郝曉敏;嚴(yán)建兵;李建生;楊小紅;;一種快速提取玉米大群體基因組DNA的方法[J];中國農(nóng)業(yè)大學(xué)學(xué)報;2011年06期

7 ;玉米的營養(yǎng)價值[J];河南農(nóng)林科技;1974年01期

8 ;突變玉米[J];云南農(nóng)業(yè)科技;1978年01期

9 陳]熙;;高營養(yǎng)玉米[J];飼料研究;1985年06期

10 張紹南,余建華;淺談我省發(fā)展甜玉米的意見[J];福建農(nóng)業(yè)科技;1986年02期

相關(guān)會議論文 前5條

1 郭燕姣;王靜云;王林華;陸秀華;姜國勇;;玉米核糖體失活蛋白對3種微生物生長抑制作用的研究[A];中國菌物學(xué)會第二屆青年菌物學(xué)術(shù)討論會論文集[C];2006年

2 黃玉碧;;兩個玉米淀粉合成酶基因啟動子克隆及功能分析[A];全國植物分子育種研討會摘要集[C];2009年

3 劉霞;王慶成;王振林;劉開昌;李宗新;張慧;;玉米、小麥皮層形態(tài)建成和胚乳淀粉粒超微結(jié)構(gòu)比較[A];中國作物學(xué)會栽培專業(yè)委員會換屆暨學(xué)術(shù)研討會論文集[C];2007年

4 張采波;周園元;曹墨菊;;空間環(huán)境誘發(fā)甜玉米胚乳突變體的遺傳分析[A];2012年全國玉米遺傳育種學(xué)術(shù)研討會暨新品種展示觀摩會論文及摘要集[C];2012年

5 徐子勤;;玉米Ubi-1啟動子可以減少轉(zhuǎn)移基因在玉米轉(zhuǎn)化體中的拷貝數(shù)[A];中國細(xì)胞生物學(xué)學(xué)會第八屆會員代表大會暨學(xué)術(shù)大會論文摘要集[C];2003年

相關(guān)重要報紙文章 前4條

1 王喜杰邋本報記者 李及肅;資源整合突顯優(yōu)勢[N];遼源日報;2008年

2 曲靖市農(nóng)科所周外森 李佳莉 馬迎旭;特色專用玉米簡介[N];云南科技報;2003年

3 ;玉米系列產(chǎn)品加工技術(shù)[N];科技日報;2006年

4 本報記者 陳云芬;育出良種惠“三農(nóng)”[N];云南日報;2013年

相關(guān)博士學(xué)位論文 前10條

1 張偉;玉米EXPANSIN家族胚乳特異表達(dá)基因鑒定及ZmEXPB13功能分析[D];安徽農(nóng)業(yè)大學(xué);2014年

2 黃君;一年生大芻草—玉米轉(zhuǎn)錄組的比較研究及馴化相關(guān)基因鑒定[D];華中農(nóng)業(yè)大學(xué);2015年

3 彭曉劍;不同類型玉米胚乳轉(zhuǎn)錄組及其淀粉代謝相關(guān)基因分析[D];安徽農(nóng)業(yè)大學(xué);2015年

4 王永輝;玉米蛋白肽基食品膠體輸送體系的構(gòu)建及應(yīng)用[D];華南理工大學(xué);2016年

5 李煬平;玉米胚乳淀粉合成相關(guān)轉(zhuǎn)錄因子ZmVP1和ZmWRKY82.2的鑒定及功能研究[D];四川農(nóng)業(yè)大學(xué);2015年

6 王鵬文;栽培措施和生態(tài)環(huán)境條件對玉米產(chǎn)量和品質(zhì)的影響研究[D];沈陽農(nóng)業(yè)大學(xué);1996年

7 李錦輝;高蛋白玉米的品質(zhì)形成機(jī)理及關(guān)鍵技術(shù)研究[D];河南農(nóng)業(yè)大學(xué);2007年

8 陳榮軍;玉米幾個重要基因的克隆和改良直鏈淀粉的轉(zhuǎn)基因研究[D];四川農(nóng)業(yè)大學(xué);2003年

9 向春陽;玉米氮效率基因型差異的篩選基礎(chǔ)及鑒定性狀的分析[D];沈陽農(nóng)業(yè)大學(xué);2003年

10 許珍;不同類型玉米籽粒淀粉形成機(jī)理及其鉀肥調(diào)控[D];山東農(nóng)業(yè)大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 徐玉隔;ADP葡萄糖焦磷酸化酶基因的玉米遺傳轉(zhuǎn)化與分子鑒定[D];河南師范大學(xué);2014年

2 劉靜;玉米GBSS基因序列變異及其與籽粒淀粉品質(zhì)性狀的關(guān)聯(lián)分析[D];揚州大學(xué);2015年

3 王志鵬;基于SPSS的玉米干燥數(shù)學(xué)模型研究分析[D];河南農(nóng)業(yè)大學(xué);2015年

4 汪瀚宇;玉米胚乳特異性啟動子的克隆與表達(dá)分析[D];四川農(nóng)業(yè)大學(xué);2014年

5 張爽爽;玉米MYB111和MYB148轉(zhuǎn)錄因子調(diào)控苯丙烷代謝途徑的初步研究[D];四川農(nóng)業(yè)大學(xué);2015年

6 胡凱鳳;鹽脅迫下耐鹽玉米自交系DNA甲基化變異的研究[D];黑龍江八一農(nóng)墾大學(xué);2016年

7 李衣菲;玉米芽種力學(xué)特性研究[D];黑龍江八一農(nóng)墾大學(xué);2016年

8 張婷;不同加工方式玉米及能量水平飼糧對奶牛泌乳性能的影響[D];湖南農(nóng)業(yè)大學(xué);2015年

9 梁紅偉;玉米密植群體弱勢粒庫特征及其調(diào)控機(jī)理研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年

10 令狐麗琴;轉(zhuǎn)cry1Ab/cry2A和G10evo-epsps基因抗蟲耐除草劑玉米和轉(zhuǎn)植酸酶基因玉米的營養(yǎng)及功效學(xué)評價[D];中國疾病預(yù)防控制中心;2016年

,

本文編號:1480883

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1480883.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶694e5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
一本色道久久综合狠狠躁| 欧美多人疯狂性战派对| 欧美一区二区三区播放| 精品国产日韩一区三区| 尤物久久91欧美人禽亚洲| 日本精品免费在线观看| 国产又粗又长又大高潮视频| 日韩视频在线观看成人| 欧美日韩中黄片免费看| 国产又粗又猛又爽色噜噜| 久久综合亚洲精品蜜桃| 日本午夜一本久久久综合| 欧美日本精品视频在线观看| 厕所偷拍一区二区三区视频| 亚洲欧美日韩精品永久| 国产日产欧美精品视频| 久久国产精品亚州精品毛片| 国产成人人人97超碰熟女| 日本加勒比系列在线播放| 日本人妻中出在线观看| 不卡一区二区高清视频| 激情综合五月开心久久| 日本大学生精油按摩在线观看| 中文字幕五月婷婷免费| 国产黄色高清内射熟女视频| 日本特黄特色大片免费观看| 精品久久少妇激情视频| 99精品国产一区二区青青| 九九九热在线免费视频| 国产又大又硬又粗又湿| 日韩综合国产欧美一区| 美女极度色诱视频在线观看| 欧美亚洲美女资源国产| 91插插插外国一区二区| 亚洲午夜av久久久精品| 国产91人妻精品一区二区三区| 日韩精品中文字幕在线视频| 精品亚洲一区二区三区w竹菊 | 大伊香蕉一区二区三区| 日韩欧美综合中文字幕| 欧美大胆女人的大胆人体|