基于SPH算法的立式小型深耕機(jī)刀具設(shè)計(jì)優(yōu)化與試驗(yàn)研究
本文關(guān)鍵詞: 立式旋耕刀 SPH 有限元 土壤切削 性能優(yōu)化 出處:《西南大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:目前丘陵山地主要使用微耕機(jī)進(jìn)行耕地作業(yè),其實(shí)際耕深一般只有10~15cm,長(zhǎng)期淺耕已經(jīng)帶來了犁底層加厚、土壤板結(jié)、保肥保墑能力下降、蓄水保水能力逐年弱化及病蟲害增加等嚴(yán)重問題,農(nóng)戶亟需丘陵山地適用的小型深耕機(jī)。立式銑削作業(yè)是小型深耕機(jī)可采用的有效作業(yè)模式之一,立式旋耕刀結(jié)構(gòu)參數(shù)和運(yùn)動(dòng)參數(shù)的取值將直接影響立式深耕機(jī)的作業(yè)質(zhì)量好壞和功耗大小。本文根據(jù)切削理論和土壤動(dòng)力學(xué)理論,對(duì)立式旋耕刀線型進(jìn)行了設(shè)計(jì)和仿真分析,以選定范圍內(nèi)的最小整機(jī)功耗為目的,對(duì)立式旋耕刀具的結(jié)構(gòu)參數(shù)和運(yùn)動(dòng)參數(shù)進(jìn)行了優(yōu)化和試驗(yàn)研究。(1)根據(jù)土壤動(dòng)力學(xué)、切削學(xué)基本理論及經(jīng)驗(yàn)公式初步設(shè)計(jì)立式旋耕刀的線型,推導(dǎo)了螺旋刀具的線型方程,并選定立式旋耕刀的結(jié)構(gòu)參數(shù);(2)分析了刀具的運(yùn)動(dòng)軌跡,其軌跡為擺線;由土壤動(dòng)力學(xué)和切削學(xué)理論分析了立式旋耕模式下土壤粒子的運(yùn)動(dòng)軌跡和受力狀態(tài),并得到立式旋耕刀的臨界角速度關(guān)系方程;分別從宏觀和微觀角度分析了旋耕刀切削土壤的功率消耗情況,其主要影響因素有前進(jìn)速度、結(jié)構(gòu)參數(shù)和旋轉(zhuǎn)速度;(3)采用SPH算法構(gòu)建符合實(shí)際特征的土壤本構(gòu)模型,并對(duì)單個(gè)旋耕刀進(jìn)行動(dòng)態(tài)仿真模擬,分析了旋耕刀切削阻力和功率消耗的變化規(guī)律及土壤粒子的運(yùn)動(dòng)狀態(tài);驗(yàn)證了懸臂梁刀具安裝的可行性;進(jìn)行耕作部件的動(dòng)態(tài)仿真,檢驗(yàn)了刀具的排列方式、數(shù)量和刀盤的設(shè)計(jì);通過作業(yè)功率測(cè)試實(shí)驗(yàn)驗(yàn)證了仿真模型的可行性。仿真分析和實(shí)驗(yàn)結(jié)果表明:1)針對(duì)本文所設(shè)計(jì)的旋耕刀,其前進(jìn)速度為0.3m/s,旋轉(zhuǎn)速度為240r/min,經(jīng)切削阻力的分析,單個(gè)刀片的切削阻力穩(wěn)定在1000N左右;2)立式旋耕刀在作業(yè)過程中,分別選取三個(gè)不同深度的土壤粒子做出運(yùn)動(dòng)軌跡,分析土壤粒子的位移、速度和加速度曲線圖,得出了刀具對(duì)土壤有提升運(yùn)輸作用,基本實(shí)現(xiàn)了上翻下松的目的。3)通過刀具的仿真分析,得到其切削功率為3.3kW,大小約為單個(gè)旋耕刀的3倍,且功率值波動(dòng)穩(wěn)定;說明各個(gè)刀片的受力均勻,選擇的刀片排列方式切實(shí)可行,能達(dá)到預(yù)期旋耕效果。4)通過測(cè)試平臺(tái)對(duì)仿真模型的單個(gè)刀具進(jìn)行驗(yàn)證實(shí)驗(yàn),其實(shí)測(cè)功率值與仿真結(jié)果誤差為8.68%。(4)以旋耕刀的前進(jìn)速度、旋轉(zhuǎn)速度和結(jié)構(gòu)參數(shù)為試驗(yàn)因子,功耗為試驗(yàn)指標(biāo)制定虛擬正交試驗(yàn),并采用軟件SPSS建立功耗與各因子的一次回歸方程,設(shè)定目標(biāo)函數(shù)和約束條件運(yùn)用軟件MATLAB對(duì)其一次線性回歸方程進(jìn)行優(yōu)化,得到立式旋耕刀具最小功耗值和與之對(duì)應(yīng)的最優(yōu)運(yùn)動(dòng)參數(shù)和結(jié)構(gòu)參數(shù)為:最小功耗為2.43kW,此時(shí)前進(jìn)速度為0.28m/s,旋轉(zhuǎn)速度為20.78rad/s,螺旋圈數(shù)為1.35。(5)進(jìn)行實(shí)驗(yàn)驗(yàn)證。測(cè)試優(yōu)化后旋耕刀具實(shí)驗(yàn)功耗平均值為2.64kW,與仿真結(jié)果誤差為8.64%,驗(yàn)證理論分析和仿真模型的正確性。同時(shí),通過平臺(tái)實(shí)驗(yàn)的測(cè)得小型深耕機(jī)平臺(tái)的耕深合格率為91.17%、碎土率為72.54%和耕后地表平整度為2cm,各項(xiàng)耕作性能指標(biāo)均達(dá)標(biāo)。
[Abstract]:At present, the main use of Hilly and mountainous micro cultivator for farmland operation, the actual depth of only 10~15cm, long-term tillage has brought plough layer thickening, soil compaction, decreased fertilizer holding capacity, water holding ability gradually weakening and serious pest problems increased, farmers need small deep plowing machine for hilly vertical. Milling is one of the effective operation mode of small deep plowing machine can be used, the value of vertical rotary blade structure parameters and motion parameters will directly affect the operation quality and the power consumption of the size of vertical deep plowing machine. Based on the cutting theory and soil dynamics theory, the vertical type of rotary blade design and simulation analysis, in the selected range the minimum power consumption for the purpose of structure parameters and motion parameters on vertical rotary cutting tools were optimized and experimental research. (1) according to the soil dynamics, cutting theory Linear vertical rotary blade preliminary design of the basic theory and empirical formula, linear equation of spiral cutter is deduced, and the selected vertical structure parameters of the rotary blade; (2) analysis of the tool path, the path for cycloid; theoretical analysis and stress state of soil particle trajectory model under vertical rotary tillage by Soil Science the dynamics and cutting, and get the critical angular velocity equation of vertical rotary blade; respectively from the perspective of macro and micro analysis of the power consumption of rotary blade cutting, the main influence factors of forward speed, structure parameters and rotational speed; (3) building accords with the actual characteristics of the soil constitutive model using SPH algorithm. And a single rotary blade were simulated, analyzed the motion variation and soil particle rotary blade cutting resistance and power consumption; to verify the feasibility of cantilever installation tool; Dynamic simulation of tillage parts, inspection tool arrangement, design number and cutter; through the operation power test to prove the feasibility of the simulation model. The simulation analysis and experimental results show that: 1) for the design of the rotary blade, the forward speed is 0.3m/s, the rotation speed is 240r/min, through the analysis of cutting the resistance of the single blade cutting resistance is stable at about 1000N; 2) vertical rotary blade in the process of operation, and selects three different depths of the soil particle motion trajectory, displacement analysis of soil particle, velocity and acceleration curve, the cutter lifting transportation effect on soil, the basic realization of the up and down the purpose of pine.3) by cutting simulation, the cutting power is 3.3kW, the size is about 3 times of a single rotary blade, fluctuation of stability and power; description of each blade of uniform stress, selection The arrangement of the blade is feasible, can achieve the desired effect of rotary.4) test platform through a single tool of the simulation model is verified experimentally, the measured power value error and simulation results for 8.68%. (4) to the rotary blade speed, rotating speed and structure parameters as experimental factors, power of making virtual orthogonal test as test indexes. Using a regression equation was established with SPSS software and the power factor, setting the objective function and constraints using the software MATLAB on the linear regression equation was optimized, by vertical rotary cutting tools the minimum power consumption value and the optimal motion and structure parameters corresponding to the minimum power consumption of 2.43kW, the forward speed is 0.28m/s, the rotating speed is 20.78rad/s, the number of spiral 1.35. (5) experiment. The optimized experimental test of rotary cutting tools the average power consumption value is 2.64kW, and the simulation results of error For 8.64%, verify the correctness of theoretical analysis and simulation model. Meanwhile, through platform experiment, the qualified rate of plough depth of small deep tillage machine platform is 91.17%, the rate of broken soil is 72.54%, and the surface evenness of cultivated land is 2cm, all the indicators of tillage performance are all up to standard.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S222
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓煜杰;李云伍;趙華慧;陳浩;劉得雄;;基于SPH算法的立式旋耕刀土壤切削仿真模擬[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年12期
2 康建明;李樹君;楊學(xué)軍;劉立晶;;正弦指數(shù)曲線型開溝刀片結(jié)構(gòu)參數(shù)優(yōu)化[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年11期
3 王敏;李萍萍;王紀(jì)章;李坤;肖宏儒;;基于LS-DYNA茶園立式旋耕刀具土壤切削過程模擬[J];江蘇農(nóng)業(yè)科學(xué);2015年09期
4 邱立春;李世強(qiáng);張旭東;張宇;;立旋刀式深松聯(lián)合耕整地機(jī)的設(shè)計(jì)與試驗(yàn)[J];沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào);2015年04期
5 張敏;吳崇友;陳長(zhǎng)林;;立式旋耕機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)及旋刀運(yùn)動(dòng)分析[J];中國(guó)農(nóng)機(jī)化學(xué)報(bào);2013年01期
6 王勇;劉鋒銳;;巖質(zhì)邊坡穩(wěn)定性影響參數(shù)敏感性分析[J];山西建筑;2012年35期
7 王路;王成武;戈振揚(yáng);;土壤—耕作部件相互作用的研究進(jìn)展[J];農(nóng)機(jī)化研究;2012年12期
8 張柯柯;盧劍鋒;張富貴;;微耕機(jī)的結(jié)構(gòu)設(shè)計(jì)與動(dòng)力學(xué)分析[J];農(nóng)機(jī)化研究;2012年04期
9 陳德新;;土壤機(jī)械化深耕深松技術(shù)及注意事項(xiàng)[J];現(xiàn)代農(nóng)業(yè)科技;2011年19期
10 蓋超;董玉平;;基于COSMOS的還田機(jī)械旋耕刀彎折角優(yōu)化[J];農(nóng)機(jī)化研究;2011年03期
相關(guān)博士學(xué)位論文 前1條
1 周艷玲;社會(huì)資本與中國(guó)民營(yíng)企業(yè)發(fā)展[D];中央民族大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 李卓;煙田小型深耕機(jī)設(shè)計(jì)與研究[D];西南大學(xué);2013年
2 李寧;旋耕機(jī)適用性評(píng)價(jià)方法研究[D];河南農(nóng)業(yè)大學(xué);2012年
3 朱留憲;基于SPH算法的微耕機(jī)旋耕刀有限元仿真與優(yōu)化[D];西南大學(xué);2012年
4 鄧昀;基于SPH法的微細(xì)切削模擬研究[D];南京航空航天大學(xué);2011年
5 王新;大型盾構(gòu)隧道地震動(dòng)力響應(yīng)數(shù)值模擬方法及應(yīng)用[D];上海交通大學(xué);2011年
6 姜濤;基于SPH法的板結(jié)土壤反旋鑿切有限元仿真研究[D];浙江工業(yè)大學(xué);2009年
7 靳永強(qiáng);異質(zhì)性透明材料疊層結(jié)構(gòu)服役行為的一體化研究[D];蘭州理工大學(xué);2009年
8 馬愛麗;基于LS-DYNA果園螺旋開溝機(jī)模擬試驗(yàn)研究及其優(yōu)化設(shè)計(jì)[D];華中農(nóng)業(yè)大學(xué);2008年
9 趙邦;整體硬質(zhì)合金立銑刀計(jì)算機(jī)輔助設(shè)計(jì)與制造系統(tǒng)研究[D];山東大學(xué);2007年
10 邱迎賓;復(fù)雜形狀刀具三維實(shí)體建模[D];華中科技大學(xué);2007年
,本文編號(hào):1449834
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1449834.html