湘中典型灌區(qū)稻田鎘污染調(diào)查與灌溉水鎘生態(tài)攔截研究
本文關(guān)鍵詞:湘中典型灌區(qū)稻田鎘污染調(diào)查與灌溉水鎘生態(tài)攔截研究 出處:《中南林業(yè)科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 鎘 灌溉水 土壤 糙米 腐殖質(zhì) 吸附 人工濕地
【摘要】:一般認(rèn)為除污灌外,灌溉水源帶入土壤的Cd很少。我國(guó)農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)(GB5084-2005)規(guī)定,灌溉水總Cd不得高于0.01mg/L。我國(guó)南方稻田灌溉定額高達(dá)15000 m3/hm2,年平均用水將近9000 m3/hm2,即使灌溉水源符合標(biāo)準(zhǔn),每年隨灌溉水進(jìn)入稻田的Cd總量仍然不可低估。灌溉水中低濃度、高通量的Cd對(duì)于土壤Cd的貢獻(xiàn)仍然沒有引起足夠的重視,針對(duì)灌溉水中鎘污染的凈化模式的研究不多。本課題以湘中某灌區(qū)農(nóng)田為研究對(duì)象,調(diào)查了灌溉水、農(nóng)田土壤、水稻糙米中鎘,采集了灌渠底泥,分析了底泥鎘形態(tài)和有機(jī)質(zhì)狀況,研究其與灌溉水、土壤、糙米Cd的相關(guān)性。構(gòu)建人工濕地系統(tǒng),結(jié)合吸附材料篩選,建立一種人工濕地結(jié)合吸附材料對(duì)灌溉水中的鎘進(jìn)行凈化的技術(shù)模式。主要研究結(jié)果如下:(1)調(diào)查了水稻生育期湘江某支流灌溉水Cd的平均濃度為6.354 ug/L,匯入湘江水體Cd平均濃度為4.006 ug/L。沿湘江某取水口灌渠對(duì)應(yīng)采集了 19個(gè)點(diǎn)的灌溉水、農(nóng)田土壤、水稻糙米樣本,研究表明,早稻灌溉水Cd平均濃度為0.447 ug/L,晚稻灌溉水Cd1.759ug/L,灌溉水Cd絕大部分無超標(biāo)。早稻、晚稻期間稻田土壤 Cd 分別為 0.556 mg/kg、0.694 mg/kg,超標(biāo) 1.85 倍、2.31 倍,糙米中 Cd超標(biāo)2.82倍。單因子污染評(píng)價(jià)表明,灌溉水只有2.2%的樣點(diǎn)輕度污染;而土壤樣點(diǎn)大部分受到Cd污染,輕度、中度以及重度污染分別占比63.2%、18.4%、15.8%;糙米中受Cd污染最為嚴(yán)重,輕度、中度以及重度污染分別占比16.7%、44.4%、36.2%。(2)沿灌渠采集底泥底泥樣品13個(gè),其Cd平均含量為1.351 mg/kg,Cd的交換態(tài)、鐵錳態(tài)以及有機(jī)結(jié)合態(tài),分別占51.04%、28.18%以及18.95%,底泥中Cd的活性較高。底泥胡敏酸、富啡酸、胡敏素分別為2.32、7.48、9.12 g/kg,DOC、氨氮以及DON的平均含量為0.34、0.10、0.07 g/kg。底泥中胡敏酸含量和早稻灌溉水中Cd濃度呈顯著正相關(guān)關(guān)系(p0.05);底泥中水溶態(tài)的Cd含量和晚稻灌溉水Cd含量呈顯著正相關(guān)關(guān)系p0.05),交換態(tài)的Cd與早稻土壤中Cd含量呈極顯著正相關(guān)關(guān)系(P0.01);而底泥中有機(jī)結(jié)合態(tài)的Cd與富啡酸、DOC、DON都呈極顯著正相關(guān)關(guān)系(p0.01),鐵錳態(tài)Cd也與富啡酸呈極顯著正相關(guān)關(guān)系(p0.01)。(3)改性玉米秸稈炭和花生殼炭對(duì)水體中Cd具有良好的吸附性能,兩種改性生物炭具有相似的吸附機(jī)制均符合準(zhǔn)二級(jí)動(dòng)力學(xué)方程,說明其吸附以化學(xué)吸附為主;改性玉米秸稈炭和改性花生殼炭對(duì)Cd2+的吸附過程均可以采用Langmuir和Freundlich等溫吸附方程來描述。由Langmuir方程擬合得出的理論最大吸附量分別為68.97、55.55mg/g,且經(jīng)6%的NaOH溶液解吸4次后,對(duì)Cd2+的吸附量仍有31.40、24.10 mg/g,可以循環(huán)利用。(4)在晚稻生育時(shí)期,用人工濕地系統(tǒng)處理灌溉水,4次采樣Cd濃度平均濃度為4.157ug/L。經(jīng)過三級(jí)人工濕地處理后,7、8、10月三次采樣時(shí)期,出水Cd濃度平均降低79.01%。4次采樣灌溉水經(jīng)過人工濕地處理后出水濃度平均為0.764 ug/L,已經(jīng)遠(yuǎn)遠(yuǎn)低于國(guó)家農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)(GB5084-2005)Cd10ug/L的限制,表明人工濕地系統(tǒng)能攔截灌溉水中Cd,有效降低了灌溉水中Cd的濃度。(5)用人工濕地系統(tǒng)處理灌溉水進(jìn)行田間小區(qū)試驗(yàn),不處理灌溉水水稻糙米中Cd最高為0.621 mg/kg,灌溉水凈化水稻糙米中Cd的平均含量為0.503 mg/kg。灌溉水經(jīng)過人工濕地系統(tǒng)處理后的各試驗(yàn)小區(qū)內(nèi)水稻糙米中Cd含量均有所下降,平均降低23.76%,其中以T2處理即人工濕地系統(tǒng)+改性玉米秸稈炭處理試驗(yàn)小區(qū)內(nèi)水稻糙米中Cd含量最低,下降29.66%,為0.437 mg/kg。雖然試驗(yàn)小區(qū)內(nèi)水稻糙米中Cd的含量有所降低,但所有糙米中Cd含量仍超過國(guó)家食品安全標(biāo)準(zhǔn)(GB2762-2012)Cd≤0.2 mg/kg的限制,灌區(qū)土壤Cd控制仍然需要多措施配套應(yīng)用。
[Abstract]:Generally the decontamination irrigation, irrigation water into the soil to little Cd. Our standards for irrigation water quality (GB5084-2005), total Cd of irrigation water shall not be higher than 0.01mg/L. in South China rice irrigation quota of up to 15000 m3/hm2, the average annual water nearly 9000 m3/hm2, even if the source of irrigation water standard, the amount of Cd per year into the paddy fields with irrigation the water is still not be underestimated. The irrigation water of low concentration, high throughput Cd for soil Cd contribution is still not attracted enough attention, not much research on purifying mode for cadmium contaminated irrigation water. In this paper a Hunan in irrigation area as the research object, the investigation of irrigation water, soil, rice cadmium, collected irrigation sediment, analysis of sediment Cadmium Forms and organic matter, and the study of irrigation water, soil, rice correlation Cd. The construction of artificial wetland system, combined with adsorption material screening, the establishment of a Artificial wetland combined with adsorption material for irrigation water purification technology model of cadmium. The main results are as follows: (1) investigated the average concentration of rice growing period in Xiangjiang on a tributary of the irrigation water Cd is 6.354 ug/L, the water flow into the Xiangjiang Cd average concentration of 4.006 ug/L. along Xiangjiang water intake channel corresponding to the 19 points of the acquisition irrigation water, soil and rice samples, research shows that rice irrigation water Cd average concentration was 0.447 ug/L, rice Cd1.759ug/L irrigation water, irrigation water Cd almost no exceed the standard. During the period of early rice, late rice paddy soil Cd were 0.556 mg/kg, 0.694 mg/kg, exceed the standard 1.85 times, 2.31 times, 2.82 times exceed the standard in brown rice Cd. Show that the single factor pollution evaluation, light pollution point of irrigation water is only 2.2%; and most soil samples polluted by Cd, mild, moderate and severe pollution accounted for 63.2%, 18.4%, 15.8%; brown rice by Cd The most serious pollution, mild, moderate and severe pollution accounted for 16.7%, 44.4%, 36.2%. (2) along the canal sediment collection 13 sediment samples, the average content of Cd is 1.351 mg/kg, exchangeable Cd, iron manganese and organic bound, respectively 51.04%, 28.18% and 18.95%, higher activity in the sediment Cd. The sediment Hu Min acid, fulvic acid and humin were 2.32,7.48,9.12 g/kg, DOC DON, the average content of ammonia nitrogen and Hu Min acid and rice irrigation water Cd concentration has a significant positive correlation between 0.34,0.10,0.07 g/kg. (P0.05) in the sediment; sediment water soluble Cd content and Cd content in rice irrigation water a significant positive correlation between the P0.05 exchange), there are significant positive correlation between the content of Cd and Cd in rice soil state (P0.01); Cd and fulvic acid in organic sediment, DOC, DON were significantly positive correlation (P0.01), iron manganese Cd and fulvic acid were A significant positive correlation (P0.01). (3) modified corn straw charcoal and peanut shell charcoal has good adsorption properties for Cd in water, two kinds of modified biochar with similar adsorption mechanisms were pseudo two order kinetics equation, indicating that the adsorption was mainly chemical adsorption; modified corn straw charcoal and the process of the adsorption of Cd2+ by modified peanut shell charcoal can be used Langmuir and Freundlich isothermal adsorption equation to describe the theory. The maximum adsorption capacity obtained by the Langmuir equation for 68.97,55.55mg/g and NaOH respectively, by 6% after 4 times of desorption solution, the adsorption capacity of Cd2+ is 31.40,24.10 mg/g, can be recycled. (4 in the late growth period,) using artificial wetland treatment system of irrigation water, 4 sampling Cd concentration the average concentration was 4.157ug/L. after three artificial wetland treatment after 7,8,10 months, three sampling period, the effluent Cd concentration decreased by an average of 79.01%.4 samples were Irrigation water after artificial wetland treatment after the effluent concentration was 0.764 ug/L, far less than the national irrigation water quality standards (GB5084-2005) Cd10ug/L, showed that the artificial wetland system can intercept the irrigation water Cd, effectively reducing the concentration of irrigation water is Cd. (5) conducted a field experiment with artificial wetland treatment system of irrigation water. Don't Cd up to 0.621 mg/kg in rice irrigation water, irrigation water purification average content in brown rice Cd decreased to 0.503 mg/kg. irrigation water through the Cd content in each experimental plot after treatment of the artificial wetland system in rice have been reduced by 23.76% on average, among which T2 is modified corn + artificial wetland system straw carbon Cd content in brown rice test area decreased by 29.66%, the lowest was 0.437 mg/kg., although the content of experimental plots in brown rice of Cd decreased, but all of brown rice In the content of Cd is still more than the national food safety standard (GB2762-2012) Cd = 0.2, mg/kg limit, soil Cd control still needs more supporting measures.
【學(xué)位授予單位】:中南林業(yè)科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S273;X56
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐德福;李映雪;方華;趙曉莉;吳芳芳;;蚯蚓對(duì)人工濕地系統(tǒng)優(yōu)化分析[J];南京信息工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
2 劉麗;黃靖;任艷軍;;人工濕地系統(tǒng)在園林綠化中的應(yīng)用研究——以成都市為例[J];安徽農(nóng)業(yè)科學(xué);2010年21期
3 黃時(shí)達(dá);冷冰;;污水的人工濕地系統(tǒng)處理技術(shù)[J];四川環(huán)境;1993年02期
4 吳振斌,陳輝蓉,雷臘梅,宋立榮,付貴萍,金建明,賀鋒,何振榮;人工濕地系統(tǒng)去除藻毒素研究[J];長(zhǎng)江流域資源與環(huán)境;2000年02期
5 莫鳳鸞,王平,李淑蘭,雷志洪,彭立新,楊立君,劉佑華;人工濕地系統(tǒng)的維護(hù)[J];云南環(huán)境科學(xué);2004年S1期
6 劉源月,鄭爽英,李開源;人工濕地系統(tǒng)處理廢水工藝及案例介紹[J];中國(guó)測(cè)試技術(shù);2005年01期
7 趙艷;金輝;;人工濕地系統(tǒng)除磷研究動(dòng)態(tài)[J];廣州環(huán)境科學(xué);2005年02期
8 王淑娟;劉操;蒲俊文;;某人工濕地系統(tǒng)對(duì)水中持久性有機(jī)污染物去除效果的分析[J];安全與環(huán)境學(xué)報(bào);2006年05期
9 彭燾;徐棟;賀鋒;吳振斌;;人工濕地系統(tǒng)在寒冷地區(qū)的運(yùn)行及維護(hù)[J];給水排水;2007年S1期
10 唐顯枝;林艷;張媛;張弛;王斌;;人工濕地系統(tǒng)植被構(gòu)建方式探討[J];四川環(huán)境;2008年06期
相關(guān)會(huì)議論文 前8條
1 高鵬杰;;對(duì)人工濕地系統(tǒng)應(yīng)用的探討[A];2003年北京“水與奧運(yùn)”學(xué)術(shù)研討會(huì)論文集[C];2003年
2 任艷軍;陳其兵;;人工濕地系統(tǒng)在成都市園林綠化建設(shè)中應(yīng)用的探討[A];風(fēng)景園林 人居環(huán)境 小康社會(huì)——中國(guó)風(fēng)景園林學(xué)會(huì)第四次全國(guó)會(huì)員代表大會(huì)論文選集(上冊(cè))[C];2008年
3 劉操;王子健;許宜平;黃炳彬;;人工濕地系統(tǒng)對(duì)內(nèi)分泌干擾物質(zhì)的去除效果[A];中國(guó)化學(xué)會(huì)第八屆水處理化學(xué)大會(huì)暨學(xué)術(shù)研討會(huì)論文集[C];2006年
4 方榮杰;譚茂蘭;李新建;吳昌智;粟世華;;人工濕地系統(tǒng)修復(fù)水稻田面源污染的試驗(yàn)研究[A];現(xiàn)代節(jié)水高效農(nóng)業(yè)與生態(tài)灌區(qū)建設(shè)(下)[C];2010年
5 劉雯;崔理華;;復(fù)合人工濕地系統(tǒng)對(duì)生活污水凈化效果的研究[A];中國(guó)環(huán)境保護(hù)優(yōu)秀論文集(2005)(上冊(cè))[C];2005年
6 劉傳;劉欣慶;肖琦;;人工濕地系統(tǒng)基質(zhì)除磷的模擬試驗(yàn)研究[A];中國(guó)環(huán)境科學(xué)學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第二卷)[C];2009年
7 王琴;張海濤;Jean-Pierre ARCANGELI;瞿賢;王曉青;王喬;李國(guó)華;方方;王毓明;李鵬;;人工濕地系統(tǒng)中工業(yè)廢水鹽度對(duì)有機(jī)物污染去除的影響[A];上海市化學(xué)化工學(xué)會(huì)2010年度學(xué)術(shù)年會(huì)論文集[C];2010年
8 萬金保;蘭新怡;湯愛萍;劉峰;;多級(jí)表面流人工濕地系統(tǒng)對(duì)農(nóng)村面源污染氮磷的去除[A];2010中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第一卷)[C];2010年
相關(guān)重要報(bào)紙文章 前4條
1 梁惠;破壞濕地者當(dāng)心聰明反被聰明誤[N];中國(guó)綠色時(shí)報(bào);2014年
2 袁博宇;“中德合作官?gòu)d水庫流域水生態(tài)綜合治理示范工程項(xiàng)目”初見成效[N];中國(guó)水利報(bào);2007年
3 本報(bào)記者 付毅飛;圓江城人民碧水夢(mèng)[N];科技日?qǐng)?bào);2005年
4 記者 趙琳 吳坤娛;撫仙湖北岸生態(tài)濕地項(xiàng)目建設(shè)穩(wěn)步推進(jìn)[N];玉溪日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前1條
1 趙聰聰;人工濕地系統(tǒng)有機(jī)氯類污染物的去除及生物優(yōu)化機(jī)制研究[D];山東大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 程明明;人力水車—岸基人工濕地系統(tǒng)對(duì)城市滯流型污染水體凈化的研究[D];東北師范大學(xué);2015年
2 王京敏;三氯生在兩種典型污水處理系統(tǒng)中去除的研究[D];山東大學(xué);2015年
3 席婧;北京園博湖人工濕地系統(tǒng)水質(zhì)凈化功能研究[D];中國(guó)林業(yè)科學(xué)研究院;2015年
4 趙志剛;人工濕地系統(tǒng)對(duì)分散式農(nóng)村生活污水處理效能及影響因素的分析研究[D];蘇州科技學(xué)院;2015年
5 楊婷;厭氧潛流多級(jí)復(fù)合人工濕地系統(tǒng)應(yīng)用及生物除磷機(jī)理研究[D];蘇州科技大學(xué);2016年
6 鄧瀟;湘中典型灌區(qū)稻田鎘污染調(diào)查與灌溉水鎘生態(tài)攔截研究[D];中南林業(yè)科技大學(xué);2017年
7 萬明輝;營(yíng)養(yǎng)鹽富集型人工濕地系統(tǒng)脫氮除磷能力研究[D];上海交通大學(xué);2011年
8 張洪洋;人工濕地預(yù)處理引黃水庫水效果與微生物特性研究[D];哈爾濱工業(yè)大學(xué);2008年
9 陸琦;人工濕地系統(tǒng)水力學(xué)優(yōu)化設(shè)計(jì)研究[D];浙江大學(xué);2005年
10 金莉;蚯蚓—人工濕地系統(tǒng)在化機(jī)漿廢水深度處理中的應(yīng)用研究[D];中國(guó)林業(yè)科學(xué)研究院;2012年
,本文編號(hào):1399624
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1399624.html