櫻桃谷肉鴨IRF4和IRF8基因克隆及其生物功能分析
本文關(guān)鍵詞:櫻桃谷肉鴨IRF4和IRF8基因克隆及其生物功能分析 出處:《山東農(nóng)業(yè)大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 櫻桃谷肉鴨 先天性免疫 氨基酸對(duì)比分析 干擾素調(diào)節(jié)因子 生物學(xué)功能
【摘要】:干擾素(IFN)在天然的抗病毒免疫反應(yīng)中具有重要的作用。哺乳動(dòng)物物的干擾素根據(jù)基因結(jié)構(gòu)、蛋白結(jié)構(gòu)、生物學(xué)功能不同可分為Ⅰ型、Ⅱ型、Ⅲ型。干擾素調(diào)節(jié)因子(IRF)是一類(lèi)轉(zhuǎn)錄因子,主要調(diào)節(jié)干擾素和干擾素刺激性應(yīng)答基因(ISG)的表達(dá),同時(shí)IRF家族本身也受IFN的調(diào)節(jié)。IRFs在病毒感染的早期先天免疫應(yīng)答中起關(guān)鍵作用。IRF4是淋巴細(xì)胞特異性的轉(zhuǎn)錄調(diào)節(jié)因子,與其它轉(zhuǎn)錄因子形成復(fù)合體,通過(guò)調(diào)節(jié)IFN及一些淋巴因子的表達(dá),參與抗病毒、Th細(xì)胞分化和B細(xì)胞成熟。IRF8也稱(chēng)為干擾素保守序列結(jié)合蛋白(IFN consensus sequence binding protein,ICSBP),是一種核轉(zhuǎn)錄因子,激活后可刺激I型IFN及ISGs的轉(zhuǎn)錄。IRF8在調(diào)控細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)、干擾素轉(zhuǎn)錄、細(xì)胞增殖、先天性免疫和適應(yīng)性免疫等方面發(fā)揮重要的作用。干擾素調(diào)節(jié)因子的生物學(xué)功能的研究集中在哺乳動(dòng)物上(大部分在鼠上),雞以及魚(yú)類(lèi)也有部分報(bào)道,而在鴨子上關(guān)于干擾素調(diào)節(jié)因子的研究尚未見(jiàn)報(bào)道;谏鲜鲈,本課題在國(guó)內(nèi)外率先開(kāi)展了鴨子上干擾素調(diào)節(jié)因子的克隆及生物功能分析的研究。本研究以櫻桃谷肉鴨作為實(shí)驗(yàn)動(dòng)物,研究?jī)?nèi)容主要包括三部分:第一部分櫻桃谷肉鴨IRF4、IRF8的克隆鑒定與進(jìn)化分析。根據(jù)預(yù)測(cè)的鴨IRF4、IRF8基因保守區(qū)域設(shè)計(jì)特異性引物,以健康櫻桃谷肉鴨脾臟反轉(zhuǎn)錄得到的cDNA為模板,經(jīng)PCR擴(kuò)增得到IRF4、IRF8片段,通過(guò)測(cè)序鑒定目的基因。其中IRF4的ORF序列長(zhǎng)1341 bp,編碼446個(gè)氨基酸;IRF8的ORF序列長(zhǎng)1290 bp,編碼429個(gè)氨基酸。根據(jù)IRF4和IRF8的進(jìn)化樹(shù)顯示,櫻桃谷肉鴨與鴻雁的同源性最高,IRF4同源性達(dá)98.4%,IRF8同源性達(dá)96.8%,此外,櫻桃肉鴨IRF4和IRF8與土綏雞和原雞的同源性也非常高,但與魚(yú)類(lèi)親緣關(guān)系較遠(yuǎn)。第二部分櫻桃谷肉鴨上IRF4、IRF8與其他物種的氨基酸對(duì)比分析以及生物學(xué)功能分析。IRF4和IRF8與多種物種進(jìn)行氨基酸序列比對(duì),例如原雞、鴻雁、人、小鼠和牙鲆,結(jié)果發(fā)現(xiàn)IRF4和IRF8均可分為七個(gè)區(qū)域:N末端(N terminus),DNA結(jié)合結(jié)構(gòu)域(DBD),推定的核定位信號(hào)(NLS),轉(zhuǎn)錄激活結(jié)構(gòu)域(TD),外顯子6(exon 6),干擾素調(diào)節(jié)因子關(guān)聯(lián)域(IAD)和C末端(C terminus)。IRF4和IRF8蛋白均具有三個(gè)保守的結(jié)構(gòu)域:N末端DBD結(jié)構(gòu)域,C端IAD結(jié)構(gòu)域和NLS結(jié)構(gòu)域。第三部分櫻桃谷肉鴨IRF4、IRF8在健康鴨各個(gè)組織的分布情況以及感染病毒之后IRF4、IRF8的消長(zhǎng)規(guī)律。通過(guò)熒光定量PCR檢測(cè)健康櫻桃谷肉鴨各組織中IRF4 m RNA和IRF8 mRNA在21種組織中的表達(dá)情況。檢測(cè)發(fā)現(xiàn),櫻桃谷肉鴨IRF4在脾臟中表達(dá)量最高,其次是法氏囊,而在皮膚和大腦中表達(dá)量較低。櫻桃谷肉鴨IRF8在各組織中的表達(dá)量差異非常大,在肝臟中的表達(dá)量最高,為法氏囊的154倍;在心臟和盲腸中的表達(dá)量也非常高,均達(dá)到法氏囊的100倍左右,而在肌肉中表達(dá)量最低。為闡明櫻桃谷肉鴨IRF4和IRF8是否參與宿主的抗病毒免疫應(yīng)答,本實(shí)驗(yàn)使用鴨坦布蘇病毒、鴨新型呼腸弧病毒和鴨瘟病毒,通過(guò)腿部肌肉注射感染櫻桃谷肉鴨,檢測(cè)攻毒之后第1、3、5天在脾臟和大腦中IRF4、IRF8的表達(dá)變化情況。結(jié)果顯示。當(dāng)被鴨坦布蘇病毒感染后,3天中兩組織中IRF4的表達(dá)差異均達(dá)到極顯著水平,在脾臟中的第3天上調(diào)達(dá)到最大值為96.5倍;腦中第5天上調(diào)達(dá)到1572.4倍。當(dāng)被鴨瘟病毒感染后,脾臟中IRF4上調(diào)水平較低,均在10倍以下,但在檢測(cè)的3天中不斷升高;大腦在感染后的上調(diào)趨勢(shì)明顯,但在1、3、5天上調(diào)水平逐漸下降,其中第一天上調(diào)達(dá)到33.6倍。當(dāng)被鴨新型呼腸弧病毒感染后,脾臟中IRF4在1、3、5天的含量逐漸升高,但總體含量較低;而在大腦中的上調(diào)趨勢(shì)非常明顯,在第1天上調(diào)就達(dá)到4388.3倍,隨后上調(diào)倍數(shù)逐漸下降。櫻桃谷肉鴨脾臟和大腦中的IRF8在感染3種病毒后的第1、3、5天表達(dá)量均呈現(xiàn)上調(diào),感染鴨瘟病毒和鴨新型呼腸弧病毒后,脾臟中的上調(diào)倍數(shù)明顯高于大腦;而感染鴨坦布蘇病毒后,大腦中的上調(diào)倍數(shù)高于脾臟,被三種病毒感染后各組脾臟和大腦上調(diào)均達(dá)到極顯著水平。當(dāng)被鴨坦布蘇病毒感染后,脾臟在第3天上調(diào)倍數(shù)達(dá)到最大值為342.2倍,但在第5天下降到201.8倍;大腦中上調(diào)非常明顯均達(dá)到1000倍左右,其中第3天上調(diào)倍數(shù)最大為1385.9倍。當(dāng)被鴨瘟病毒感染后,脾臟在第1天上調(diào)倍數(shù)最高達(dá)到106.9倍;而腦中相對(duì)較低。當(dāng)被鴨新型呼腸弧病毒感染后,脾臟和大腦在感染后的第1天上調(diào)均達(dá)到最高水平,其中脾臟達(dá)到10843.9倍,第3天和第5天上調(diào)倍數(shù)逐漸減小。本研究表明,櫻桃谷肉鴨中存在IRF4和IRF8這兩個(gè)轉(zhuǎn)錄調(diào)節(jié)因子,且在健康鴨的組織中廣泛分布。不同類(lèi)型的病毒感染櫻桃谷肉鴨后,IRF4和IRF8在大腦和脾臟中的表達(dá)量均顯著上調(diào),表明這兩個(gè)因子參與宿主的抗病毒反應(yīng)。本研究為進(jìn)一步探究鴨IRF4和IRF8的抗病毒作用機(jī)理以及其介導(dǎo)的信號(hào)通路奠定了基礎(chǔ),有助于認(rèn)識(shí)鴨的先天性免疫系統(tǒng),豐富免疫學(xué)知識(shí),為疾病防控奠定理論基礎(chǔ)。
[Abstract]:Interferon (IFN) plays an important role in antiviral immune response in mammals. Natural objects according to the interferon gene structure, protein structure, biological function can be divided into type I, II, III. Interferon regulatory factor (IRF) is a transcription factor, regulating interferon and interferon stimulated genes (response the expression of IRF and ISG), the family itself is also regulated by IFN.IRFs in the early innate immune response to virus infection plays a key role in.IRF4 transcription, lymphocyte specific regulatory factor, form complexes with other transcription factors, involved in the regulation of IFN expression by antiviral, and some lymphokines, differentiation and B cell Th cell maturation.IRF8 is also known as interferon conserved sequence binding protein (IFN consensus sequence binding, protein, ICSBP) is a nuclear transcription factor,.IRF8 transcription activation after stimulation of I type IFN and ISGs In the regulation of cytokine signal transduction, interferon transcription, cell proliferation, play an important role in innate immunity and adaptive immunity. Study on biological function of interferon regulatory factor concentration in mammals (mostly in mice), chicken and fish also have some of the reports, and in the research on the duck interferon regulatory factor is has not been reported. Based on the above reasons, this paper first carried out research and Analysis on the duck interferon regulatory factor gene cloning and biological function at home and abroad. In this study, the ducks as the experimental animal, the research content mainly includes three parts: the first part of the ducks IRF4, molecular cloning and phylogenetic analysis of IRF8. According to the prediction of duck IRF4 IRF8 gene, conserved region specific primers were designed to get healthy ducks spleen reverse transcription cDNA as template, amplified by PCR IRF4, IRF8 Fragments were confirmed by DNA sequencing. The ORF gene sequence of IRF4 1341 BP in length, encoding 446 amino acids; ORF IRF8 sequence length of 1290 BP, encoding 429 amino acids. According to the phylogenetic tree of IRF4 and IRF8 showed that the ducks and geese of the highest homology of IRF4 homology 98.4%, IRF8 homology is 96.8% in addition, IRF4 and IRF8, cherry duck and chicken gallus and soil Sui homology is very high, but the fish and distantly related. The second part ducks on IRF4, IRF8 and other species of amino acid comparative analysis and biological function analysis of.IRF4 and IRF8 with various species of amino acid sequence, such as gallus, Hongyan, human, mice and flounder, the results showed that IRF4 and IRF8 can be divided into seven regions: the end of the N (N terminus), DNA binding domain (DBD), the putative nuclear localization signal (NLS), transcription activation domain (TD), exon 6 (exon 6), interferon Regulator associated domain (IAD) and C (C terminus) at the end of.IRF4 and IRF8 proteins have three conserved domains: N terminal DBD domain, C terminal IAD domain and NLS domain. The third part of the ducks in IRF4, the distribution of IRF8 in various tissues and healthy duck virus infection after IRF4. The dynamic law of IRF8. The expression of the fluorescent quantitative PCR detection in IRF4 m RNA healthy ducks and IRF8 mRNA in 21 tissues. Detection of IRF4 in the spleen of ducks in the highest expression level, followed by the bursa, and in skin and brain in low expression. Expression difference the ducks IRF8 in different tissues is very large, the expression in liver is highest, 154 times of bursa; expression in the heart and the cecum is also very high, reached about 100 times of the bursa, and the lowest expression in muscle. In order to clarify the Sakura Whether the antiviral immune response Momodani duck IRF4 and IRF8 in the host, duck Tembusu virus used in this experiment, the new duck reovirus and duck plague virus infection, by intramuscular injection of ducks challenged, detection after 1,3,5 days in spleen and IRF4 in the brain, the expression of IRF8. The results showed that when. Is duck Tembusu virus after infection, expression of IRF4 two in 3 days in the organization reached significant level in the spleen third days up to a maximum of 96.5 times; in the brain fifth to 1572.4 times. When the sky up by duck plague virus after infection in the spleen, the up regulation of IRF4 level is low, are in the following 10 times, but in the detection of 3 days increased; in brain after infection was significantly up-regulated, but decreased in 1,3,5 days by the first level, up to 33.6 times. When the sky was new duck reovirus infection after IRF4 in spleen The content of 1,3,5 days gradually increased, but the overall content is low; and the upward trend in the brain is very obvious, on the first day increase reached 4388.3 times, then up-regulated gradually decreased. The ducks in the spleen and brain IRF8 in 3 kinds of viral infection after day 1,3,5 expression were increased, infection of duck new duck plague virus and reovirus, up-regulated in spleen was significantly higher than that of the brain; and the infection of duck Tembusu virus, up-regulated in the brain was three higher than that in the spleen, spleen and brain after infection were up-regulated reached significant level. When the duck Tembusu virus after infection, the spleen reached the maximum value is 342.2 times in the third heaven adjustable multiples, but in fifth fell to 201.8 times; in the brain increased obviously reached about 1000 times, third of which is 1385.9 times the maximum adjustment ratio of heaven. When duck plague virus after infection in the spleen The first day adjustment ratio up to 106.9 times; and the brain is relatively low. When the new duck reovirus infection, spleen and brain have reached the highest level in the first day after infection, the spleen reached 10843.9 times, third days and fifth days up-regulated gradually decreases. This study shows that IRF4 and IRF8 these two transcription factors are widely distributed and the ducks, duck in healthy tissues. Different types of virus infection in ducks, the expression of IRF4 and IRF8 in the brain and spleen weight were significantly up-regulated, indicating that these two factors involved in host antiviral responses. This research laid the foundation for the to further explore the duck IRF4 and IRF8 antiviral mechanism and signaling pathways mediated, contribute to the innate immune system of duck, rich knowledge and lay the theoretical foundation for immunology, disease prevention and control.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S834
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮盼盼;盧雪梅;金小寶;朱家勇;;干擾素的藥理研究進(jìn)展[J];廣東藥學(xué)院學(xué)報(bào);2014年06期
2 沈金花;呂印;劉慶華;;干擾素調(diào)節(jié)因子的研究進(jìn)展[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
3 齊巍巍;張艷麗;閆益波;鐘部帥;王鋒;;干擾素調(diào)節(jié)因子1的研究進(jìn)展[J];江蘇農(nóng)業(yè)科學(xué);2011年02期
4 王玳瑋;鄧學(xué)梅;;干擾素調(diào)節(jié)因子-1分子結(jié)構(gòu)與生物學(xué)功能[J];中國(guó)畜牧獸醫(yī);2010年11期
5 岳道友;索勛;汪明;張龍現(xiàn);;雞α-干擾素研究進(jìn)展[J];中國(guó)家禽;2010年17期
6 何敬堂;沈毅慧;劉小麗;崔東來(lái);;干擾素調(diào)節(jié)因子7的結(jié)構(gòu)和作用研究進(jìn)展[J];中國(guó)誤診學(xué)雜志;2010年25期
7 銀曉;關(guān)平原;;干擾素的研究進(jìn)展[J];畜牧與飼料科學(xué);2008年02期
8 周海龍;韋雙雙;謝俊;鄭繼平;朱慶;;家禽干擾素的研究進(jìn)展[J];畜禽業(yè);2007年07期
9 劉占通;舒暢;劉金娥;崔保安;;干擾素研究進(jìn)展[J];中國(guó)獸藥雜志;2006年10期
10 曹永浩;張仕堅(jiān);周元聰;;干擾素調(diào)節(jié)因子家族和免疫調(diào)控[J];生命的化學(xué);2006年05期
,本文編號(hào):1386459
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1386459.html