紅壤涌泉灌水分入滲特性研究
本文關(guān)鍵詞:紅壤涌泉灌水分入滲特性研究 出處:《南昌工程學(xué)院》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 紅壤涌泉灌 正交設(shè)計(jì) 濕潤鋒 最優(yōu)灌溉參數(shù)
【摘要】:涌泉灌技術(shù)是針對中國滴灌系統(tǒng)使用過程中傳統(tǒng)灌水器容易堵塞的弊端,以及農(nóng)業(yè)生產(chǎn)管理水平低的狀況而形成的一種適用于果樹和植樹造林的微灌技術(shù)。近年來的大部分涌泉灌溉研究大多針對山西、河北、新疆等干旱盆地的大田寬行作物的果園試驗(yàn)區(qū)進(jìn)行研究,但針對江西等水資源相對充足地區(qū)進(jìn)行試驗(yàn)極少。在歷年來的涌泉灌系統(tǒng)設(shè)計(jì)中,出水口間距主要根據(jù)植物的種植間距來確定,本文主要考慮土壤容重、灌水流量和土壤初始重量含水率等因素,通過正交設(shè)計(jì)軟件對試驗(yàn)進(jìn)行簡化,通過室內(nèi)試驗(yàn)對紅壤涌泉灌溉條件下的濕潤體內(nèi)入滲水分的運(yùn)移規(guī)律進(jìn)行研究,最后還通過正交設(shè)計(jì)軟件和SPSS軟件對三種不同的考察因素進(jìn)行分析,得出每種考察因素對應(yīng)的最優(yōu)灌水技術(shù)參數(shù)。具體研究結(jié)果如下:(1)出水口下方的水平和垂直方向上的濕潤體最大濕潤半徑均隨入滲時(shí)間的推移呈增大的趨勢,入滲初期水平和垂直方向上的濕潤體濕潤半徑的增長速度遠(yuǎn)遠(yuǎn)大于入滲后期,且垂直濕潤鋒在相同時(shí)間段內(nèi)的運(yùn)移距離小于水平濕潤鋒,但隨著入滲時(shí)間的推移垂直濕潤鋒逐漸和水平濕潤鋒逐漸接近;(2)隨著入滲時(shí)間的延長,濕潤體的形狀亦發(fā)生著變化,由起初的橫軸長縱軸短的1/4的橫臥橢球體,逐漸變成接近于1/4全圓球體,橢球型的剖面形狀可用長軸和短軸隨時(shí)間變化的橢圓方程表示;紅壤涌泉灌土壤內(nèi)的入滲水分再分布過程主要發(fā)生在灌水結(jié)束后的24h內(nèi),再分布過程中,出水口下方的水平和垂直方向濕潤鋒的運(yùn)移速度以及濕潤鋒的變化值均為垂直方向大于水平方向,濕潤體的形狀也由1/4全圓球體變?yōu)?/4垂直橢球體;(3)灌水剛結(jié)束時(shí)的濕潤體內(nèi)的土壤含水率在24.72%~34.15%范圍之間,而入滲水分再分布24h后,濕潤體土壤含水率降為16.81%~24.04%范圍之內(nèi);距出水口同一距離下,土體含水率隨著土體深度的增加而減小;同一土層深度下,土體含水率隨著距出水口距離的增大而減小,但減小的幅度均較小;(4)通過正交設(shè)計(jì)軟件和SPSS軟件分析得到,最優(yōu)灌水技術(shù)參數(shù)應(yīng)設(shè)定為容重1.34g/cm3、灌水流量3.0L/H、初始重量含水率7.0%,在相同入滲時(shí)間內(nèi)灌溉的水平根系范圍越大,橫向根系發(fā)達(dá)植物生長得越好;最優(yōu)灌水技術(shù)參數(shù)應(yīng)設(shè)定為容重1.20g/cm3、灌水流量3.0L/H、初始重量含水率7.0%,在相同入滲時(shí)間內(nèi)灌溉的縱向根系深度越深,縱向根系發(fā)達(dá)植物生長得越好,但同時(shí)應(yīng)酌情控制灌溉時(shí)間,以避免灌溉水的深層滲漏、混合水肥的流失浪費(fèi)以及水體污染;最優(yōu)灌水技術(shù)參數(shù)應(yīng)設(shè)定為容重1.20g/cm3、灌水流量3.0L/H、初始重量含水率5.0%,在相同時(shí)間內(nèi)土壤含水率越高,植物根系吸收水分越充分;(5)綜合水平濕潤鋒運(yùn)移距離、垂直濕潤鋒運(yùn)移距離和再分布24h后土壤含水率三種因變量的優(yōu)勢考慮,將控制因素設(shè)定為容重1.20g/cm3、灌水流量3.0L/H、初始重量含水率7.0%,在相同入滲時(shí)間內(nèi)在濕潤體覆蓋更多的植物根系的同時(shí)又能使植物根系充分吸收水分。
[Abstract]:Bubble irrigation technique is based on the disadvantages of the traditional emitter clogging of drip irrigation system using Chinese process, suitable for fruit trees and afforestation irrigation technology and management level of agricultural production is low and the formation of research in recent years. Most of the spring irrigation mostly in Shanxi, Hebei, on orchard test area wide field crops Xinjiang basin drought, but the test for Jiangxi and other relatively abundant water resource area rarely. In the years of bubble irrigation system design, the main outlet spacing according to the plant planting spacing is determined, this paper considers the factors of water flow and soil bulk density, initial soil weight moisture content, through the orthogonal test the software design is simplified, through indoor test research on soil springs under condition of irrigation infiltration of water into the moist body movement, and finally through the On three different factors were analyzed by orthogonal design and SPSS software, the optimal technique parameters for each factors. The main results are as follows: (1) the maximum wetting radius of wetting body under the water outlet of the horizontal and vertical directions with the infiltration time was increased, the the initial infiltration wetting radius of horizontal and vertical direction of the growth rate is far greater than infiltration stage, and the vertical wetting front movement in the same period of time is less than the distance between the horizontal wetting front, but with the passage of the vertical wetting front infiltration time and the horizontal wetting front gradually approaching; (2) with the infiltration time prolonged, moist body shape also changed, from the lying ellipsoid initial transverse longitudinal axis of short 1/4, gradually become closer to the 1/4 sphere, ellipsoid type profile available long axis and short axis at any time Said the elliptic equation changes between red soil; Bubble Irrigation in soil infiltration redistribution after irrigation mainly occurred in 24h, in the process of re distribution, migration velocity of outlet below the horizontal and vertical wetting front and the wetting front change values are greater than the vertical horizontal direction, the wetting the shape by 1/4 sphere to 1/4 vertical ellipsoid; (3) at the end of the irrigation wetting of the soil moisture content in the range of 24.72%~34.15%, and the infiltration water redistribution 24h after wetting the soil moisture content reduced to the range of 16.81%~24.04%; the outlet from the same distance, soil water content decreased with the increase of soil depth; the same depth, soil water content decreased with increasing distance from the outlet, but the rate of decrease was smaller; (4) obtained by orthogonal design software and SPSS software analysis, the most Optimal irrigation technical parameters should be set for the bulk density of 1.34g/cm3, water flow rate 3.0L/H, 7% of the initial moisture content, at the same time infiltration range of horizontal root irrigation is bigger, the lateral root developed better plant growth; optimal irrigation technical parameters should be set for the bulk density of 1.20g/cm3, water flow rate 3.0L/H, 7% of the initial moisture content, the more deep at the same time the longitudinal root depth of infiltration irrigation, vertical root developed plants grow better, but at the same time as appropriate controlling irrigation time, to avoid the deep seepage of irrigation water, mixed fertilizer loss waste and water pollution; optimal irrigation technical parameters should be set for the bulk density of 1.20g/cm3, water flow rate 3.0L/H, 5% of the initial weight of water rate, soil water content was higher at the same time, plant roots absorb water more fully; (5) the comprehensive level of wetting front distance, vertical wetting front distance and then 24h after the soil moisture content of three kinds of dependent variable advantages to consider, the control factors are set as bulk density 1.20g/cm3, water flow rate 3.0L/H, 7% of the initial moisture content, at the same time the intrinsic infiltration wetting cover the roots more at the same time can make the plant roots absorb water.
【學(xué)位授予單位】:南昌工程學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S152.7;S275
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖娟;雷廷武;李光永;;水質(zhì)及流量對鹽堿土滴灌濕潤鋒運(yùn)移影響的室內(nèi)試驗(yàn)研究[J];農(nóng)業(yè)工程學(xué)報(bào);2007年02期
2 王永東;張宏武;徐新文;李生宇;李應(yīng)罡;孫樹國;;風(fēng)沙土水分入滲與再分布過程中濕潤鋒運(yùn)移試驗(yàn)研究[J];干旱區(qū)資源與環(huán)境;2009年08期
3 姚建中;紅壤水分入滲時(shí)濕潤鋒移動(dòng)規(guī)律探討[J];土壤通報(bào);1991年S1期
4 孫海燕,李明思,王振華,徐永麟;滴灌點(diǎn)源入滲濕潤鋒影響因子的研究[J];灌溉排水學(xué)報(bào);2004年03期
5 鄭園萍;吳普特;范興科;;雙點(diǎn)源滴灌條件下土壤濕潤鋒運(yùn)移規(guī)律研究[J];灌溉排水學(xué)報(bào);2008年01期
6 王千,曾德超;預(yù)測濕潤鋒進(jìn)程的新方法[J];農(nóng)業(yè)工程學(xué)報(bào);1993年01期
7 李濤;張建豐;程慧娟;楊艷芬;秦濤;;深層坑滲灌田間單點(diǎn)入滲濕潤鋒分布特性及擬合模型研究[J];干旱地區(qū)農(nóng)業(yè)研究;2010年04期
8 王春霞;王全九;單魚洋;莊亮;張奮東;陳躍冰;;微咸水滴灌下濕潤鋒運(yùn)移特征研究[J];水土保持學(xué)報(bào);2010年04期
9 賈運(yùn)崗;張富倉;李培嶺;;大田滴灌條件下土壤水分運(yùn)移規(guī)律的試驗(yàn)研究[J];灌溉排水學(xué)報(bào);2007年06期
10 王紅閃,黃明斌,董翠云;用Philip模型參數(shù)推求濕潤鋒平均基質(zhì)吸力S_f準(zhǔn)確性[J];水土保持通報(bào);2004年02期
相關(guān)會(huì)議論文 前1條
1 郭向紅;孫西歡;馬娟娟;李嶸;于洲海;;蓄水單坑入滲土壤濕潤體影響因素分析與模擬[A];現(xiàn)代節(jié)水高效農(nóng)業(yè)與生態(tài)灌區(qū)建設(shè)(上)[C];2010年
相關(guān)碩士學(xué)位論文 前10條
1 林曉康;不同因素對微咸水膜孔灌水氮鹽運(yùn)移影響[D];河北工程大學(xué);2015年
2 楊立魁;小管出流灌溉室內(nèi)試驗(yàn)研究與室外管路工程設(shè)計(jì)實(shí)例分析[D];山西農(nóng)業(yè)大學(xué);2015年
3 畢駿;非飽和黃土地基滲流場數(shù)值模擬研究[D];蘭州大學(xué);2015年
4 古鵬飛;滴灌條件下紅壤土交匯入滲水分運(yùn)移規(guī)律研究[D];南昌工程學(xué)院;2015年
5 郭力瓊;微咸水滴灌土壤水鹽運(yùn)移規(guī)律研究[D];太原理工大學(xué);2016年
6 梁欣欣;紅壤涌泉灌水分入滲特性研究[D];南昌工程學(xué)院;2017年
7 攔繼元;指流形成機(jī)理及主要影響因素的初步實(shí)驗(yàn)研究[D];西安理工大學(xué);2006年
8 楊憲杰;集雨灌溉中集水面和水分入滲的試驗(yàn)研究[D];山西農(nóng)業(yè)大學(xué);2001年
9 關(guān)冰藝;滴灌條件下斥水土壤水鹽運(yùn)移規(guī)律試驗(yàn)研究[D];西北農(nóng)林科技大學(xué);2012年
10 陶濤;微潤灌條件下微潤袋入滲特性試驗(yàn)研究[D];河北工程大學(xué);2014年
,本文編號(hào):1379708
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1379708.html