基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng)及應(yīng)用研究
本文關(guān)鍵詞:基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng)及應(yīng)用研究 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 無線檢測系統(tǒng) 含水量 電導(dǎo)率 ANSYS仿真 溫度補償 基質(zhì)栽培
【摘要】:在基質(zhì)栽培生產(chǎn)中,及時掌握并調(diào)控基質(zhì)的含水量、電導(dǎo)率和溫度等參數(shù),對作物的生長具有重要的意義。針對目前基質(zhì)檢測系統(tǒng)水分、電導(dǎo)等參數(shù)檢測準(zhǔn)確性、穩(wěn)定性差的問題,本文基于多傳感器融合技術(shù),利用無線網(wǎng)絡(luò)技術(shù),研究出基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng),并進行了應(yīng)用試驗研究。這對提高農(nóng)業(yè)生產(chǎn)自動化程度,促進基質(zhì)栽培生產(chǎn)科技進步具有十分重要價值和意義。本文主要研究內(nèi)容和結(jié)果是:(1)基質(zhì)含水量電導(dǎo)率傳感器設(shè)計及仿真。通過對基質(zhì)含水量電導(dǎo)率檢測方法現(xiàn)狀分析,確定了采用電容法檢測含水量,采用交流“電流-電壓”四端法檢測電導(dǎo)率;針對基質(zhì)不同于土壤的理化特性,為保證傳感器的敏感元件與基質(zhì)有良好的接觸性、傳感器結(jié)構(gòu)簡單易實現(xiàn),本文統(tǒng)一設(shè)計含水量電導(dǎo)率傳感器的敏感元件結(jié)構(gòu);對敏感元件結(jié)構(gòu)進行ANSYS靜電場仿真分析,確定敏感元件的尺寸;對含水量、電導(dǎo)率和溫度檢測電路優(yōu)化設(shè)計,優(yōu)化調(diào)整PCB排版布局。(2)基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng)構(gòu)建及軟件設(shè)計;赯igBee無線網(wǎng)絡(luò)技術(shù),設(shè)計了傳感器節(jié)點和匯聚節(jié)點軟件程序,構(gòu)建基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng);以虛擬儀器LabVIEW為管理平臺,設(shè)計了上位機系統(tǒng)管理程序,在人機交互界面直觀觀察傳感器各個節(jié)點的檢測結(jié)果及其變化曲線。(3)基質(zhì)含水量電導(dǎo)率傳感器標(biāo)定及溫度補償研究。設(shè)計標(biāo)定試驗,基于溫度補償方法,根據(jù)檢測參數(shù)溫度特性,溫度對含水量和電導(dǎo)率檢測結(jié)果的影響試驗數(shù)據(jù),利用回歸分析方法建立基質(zhì)出含水量、電導(dǎo)率溫度補償模型;最后通過對溫度補償前后靈敏度溫度系數(shù)的比較來評估補償效果,驗證了傳感器溫度補償效果。(4)基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng)應(yīng)用研究。開展系統(tǒng)精密度、準(zhǔn)確度和穩(wěn)定性檢測試驗,系統(tǒng)試驗結(jié)果分析得到:系統(tǒng)檢測基質(zhì)體積含水量的精密度為1.88%,最大誤差為0.0171,相對誤差小于6.72%;系統(tǒng)檢測基質(zhì)電導(dǎo)率的精密度為2.12%,最大誤差為0.14mS/cm,相對誤差小于5.26%。在系統(tǒng)穩(wěn)定性試驗的30個連續(xù)測量數(shù)據(jù)中,體積含水量值波動不超過0.0018,電導(dǎo)率值波動不超過0.04mS/cm,系統(tǒng)穩(wěn)定性良好。以上應(yīng)用試驗結(jié)果驗證了所設(shè)計的無線檢測系統(tǒng)可以準(zhǔn)確地檢測基質(zhì)含水量、電導(dǎo)率,并成功將結(jié)果傳輸?shù)缴衔粰C進行分析處理及顯示。本文通過對傳感器的結(jié)構(gòu)設(shè)計、無線網(wǎng)絡(luò)系統(tǒng)硬件構(gòu)建和軟件設(shè)計,基于LabVIEW開發(fā)平臺的基質(zhì)含水量電導(dǎo)率無線檢測系統(tǒng)應(yīng)用試驗研究,實現(xiàn)了含水量和電導(dǎo)率實時無線檢測與監(jiān)視,對基質(zhì)栽培的作物生產(chǎn)具有一定工程應(yīng)用價值。
[Abstract]:In the production of matrix cultivation, it is of great significance to master and control the parameters of water content, electrical conductivity and temperature in time. Aiming at the problem of the accuracy and stability of matrix detection system such as moisture and conductivity, based on multi-sensor fusion technology, a wireless detection system of matrix water content and conductivity is developed by using wireless network technology. It is of great value and significance to improve the automation of agricultural production and promote the progress of science and technology in the production of matrix cultivation. The main contents and results of this paper are as follows: (1) the design and Simulation of water conductivity sensor of matrix water content. Through the current detection methods of moisture conductivity analysis, determine the moisture detection by capacitance method, AC electrical current voltage four terminal method for detection of electrical conductivity; physicochemical properties of soil in different matrix, in order to ensure the sensitive element and matrix sensor is contacted, a good sensor structure is simple and easy to realize, in this paper, a unified design structure sensitive element moisture conductivity sensor; analysis of ANSYS electrostatic field simulation of sensitive element structure, determine the size of the sensitive element; water content, conductivity and temperature detection circuit optimization design, optimization and adjustment of PCB layout. (2) the construction and software design of the wireless detection system for the conductivity of the matrix water content. ZigBee wireless network technology based on the software design of sensor node and sink node, construct the matrix containing wireless detection system based on virtual instrument LabVIEW water conductivity; for the management platform, and designed computer system management procedures, the detection results of man-machine interface intuitive observation sensor nodes and curve. (3) the calibration of water conductivity sensor and the study of temperature compensation. The design of the calibration test, the temperature compensation method based on temperature characteristic parameters according to experimental data, the temperature effect on the moisture and electrical conductivity test results, using the regression analysis method to establish a model of water content, conductivity temperature compensation matrix; finally through the comparison of temperature compensation coefficient to evaluate the sensitivity before and after temperature compensation effect, verify the sensor temperature compensation effect. (4) research on the application of wireless detection system for water conductivity of matrix. To carry out the system of precision, accuracy and stability test, system test results show that the system detects the matrix volume water content precision is 1.88%, the maximum error is 0.0171, the relative error is less than 6.72%; the matrix conductivity detection system precision is 2.12%, the maximum error is 0.14mS/cm, the relative error is less than 5.26%. In the 30 continuous measurement data of the system stability test, the volume water content value fluctuates not more than 0.0018, and the conductivity value fluctuates less than 0.04mS/cm, and the system stability is good. The above application test results verify that the designed wireless detection system can accurately detect the water content and conductivity of the matrix, and successfully transfer the results to the upper computer for analysis, processing and display. Based on structure design, sensor wireless network hardware and software design of LabVIEW development platform, matrix moisture conductivity test system using wireless detection based on the moisture content and conductivity detection and real-time wireless monitoring, has a certain application value for the cultivation of the crop production base.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S126;S317
【參考文獻】
相關(guān)期刊論文 前10條
1 郇戰(zhàn);王振海;陶亞輝;;基于高頻電容法的耕地土壤水分檢測研究[J];測控技術(shù);2016年06期
2 賈志峰;朱紅艷;王建瑩;姬國斌;;基于介電法原理的傳感器技術(shù)在土壤水分監(jiān)測領(lǐng)域應(yīng)用探究[J];中國農(nóng)學(xué)通報;2015年32期
3 孫越君;鄭小坡;秦其明;孟慶野;高中靈;任華忠;吳伶;王俊;王建華;;不同質(zhì)量含水量的土壤反射率光譜模擬模型[J];光譜學(xué)與光譜分析;2015年08期
4 趙燕東;李寧;皮婷婷;;基于交流“四端法”的土壤電導(dǎo)率在線實時檢測系統(tǒng)[J];農(nóng)業(yè)機械學(xué)報;2015年08期
5 徐坤;張西良;李萍萍;陳書田;盛慶元;車云飛;;便攜式無土栽培基質(zhì)多參數(shù)無線檢測儀[J];農(nóng)業(yè)機械學(xué)報;2015年03期
6 唐玉邦;徐磊;范如芹;虞利俊;張振華;裴勤;王恒義;;溫度對土壤水分張力計的內(nèi)壓影響及校正方法(英文)[J];Agricultural Science & Technology;2014年05期
7 江朝暉;檀春節(jié);支孝勤;王春生;馬友華;;基于頻域反射法的便攜式土壤水分檢測儀研制[J];傳感器與微系統(tǒng);2013年01期
8 廖軼群;李毅;Robert Horton;崔晨風(fēng);;新疆參考作物騰發(fā)量多元回歸模型及空間分布[J];排灌機械工程學(xué)報;2012年01期
9 劉梅先;楊勁松;;土壤鹽分的原位測定方法[J];土壤;2011年05期
10 張亞秋;吳文福;王剛;;基于虛擬儀器的糧食水分檢測系統(tǒng)神經(jīng)網(wǎng)絡(luò)溫度補償[J];中國糧油學(xué)報;2011年05期
相關(guān)博士學(xué)位論文 前2條
1 賈玉華;坡面土壤水分時空變異的試驗研究[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2013年
2 劉瑾;農(nóng)田土壤水分散性膠體磷的賦存形態(tài)、活化機制及阻控技術(shù)研究[D];浙江大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 侯坤;基于Android平臺的土壤基質(zhì)多參數(shù)檢測儀研制[D];江蘇大學(xué);2016年
2 劉連偉;動態(tài)雙極性脈沖法電導(dǎo)率測量儀的研制[D];河北農(nóng)業(yè)大學(xué);2015年
3 李璐;基于虛擬儀器技術(shù)的溫室環(huán)境檢測及無線傳輸系統(tǒng)研究[D];天津科技大學(xué);2015年
4 沈棋棋;基于可變系數(shù)回歸分析的應(yīng)變式位移傳感器溫度補償[D];東華大學(xué);2015年
5 高古鵬;基于神經(jīng)網(wǎng)絡(luò)的FPGA溫度補償QCM濕度傳感器系統(tǒng)設(shè)計[D];西南交通大學(xué);2014年
6 李新樂;連續(xù)多年灌水施磷肥對紫花苜蓿產(chǎn)量和土壤環(huán)境的影響[D];中國農(nóng)業(yè)科學(xué)院;2014年
7 王磊;基于ARM11的溫室無線智能檢測系統(tǒng)研究[D];南華大學(xué);2013年
8 謝忠兵;基于ZigBee技術(shù)的土壤溫度和濕度無線檢測系統(tǒng)研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2012年
9 高山川;雙頻正弦信號電導(dǎo)率測量儀設(shè)計[D];大連理工大學(xué);2010年
10 李志浩;基于神經(jīng)網(wǎng)絡(luò)的超聲波流量測量及溫度補償系統(tǒng)的研究[D];青島科技大學(xué);2010年
,本文編號:1342962
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1342962.html