天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于色譜聯(lián)用技術(shù)的沉香標志性差異成分分析研究

發(fā)布時間:2018-08-19 15:10
【摘要】:目的:沉香主要來源于瑞香科沉香屬(Aquzlaria)和擬沉香屬(Gyrinops)含有樹脂的木材,主要分布于我國廣東,海南,廣西等地及印尼、越南、柬埔寨、馬來西亞等東南亞國家。沉香分為進口沉香和國產(chǎn)沉香兩種,國產(chǎn)沉香基原植物為沉香屬Aquilari a sinensis,而進 口沉香基源植物多為沉香屬 Aquilaria malaccensi、Aquilaria crassna。沉香品質(zhì)好壞跟種源、結(jié)香方式等密切相關,現(xiàn)代分子鑒定技術(shù)雖然能夠鑒別出沉香基原,但對同一來源不同結(jié)香方式的樣品的區(qū)分尚未有有效方法。特定的種源和特定的結(jié)香方式會產(chǎn)生特定的化學成分,因此通過分析沉香內(nèi)在化學成分的差異可能是沉香種源鑒別、質(zhì)量控制、品質(zhì)分類的一條很好的途徑。目前尚未不清楚不同類型沉香間有存在哪些差異,也尚未建立篩選識別這些差異成分的方法,因此本文擬結(jié)合沉香內(nèi)在成分的特點,利用現(xiàn)代先進分析儀器和統(tǒng)計學方法,采用GCMS和LCMS結(jié)合多元統(tǒng)統(tǒng)計和單維分析方法對沉香成分進行全面系統(tǒng)分析,輔以主成分分析(PCA)、正交偏最小二乘判別分析(OPLS-DA)等統(tǒng)計方法,找出不同沉香組間的差異成分,同時對不同類型的沉香成分進行分類比較和聚類分析,為沉香快速鑒別、質(zhì)量控制和品質(zhì)分類提供參考和依據(jù)。方法:(1)按2015版中國藥典一部沉香鑒別項下相關要求測定樣品醇浸出物的含量,采用HPLC法(色譜柱Altima C18(150 mm×4.6 mm,5 μm),流動相為乙腈(A)-0.1%甲酸水(B),梯度洗脫,流速0.7 mL·min-1,檢測波長252 nm,柱溫30℃)測定樣品中的沉香四醇含量,結(jié)合醇浸出物和沉香四醇含量結(jié)果初步分析探討不同類型沉香間的差異。(2)采用GCMS聯(lián)用儀(HP-5彈性石英毛細管柱(0.25 mm×30 m,0.25 μm),載氣為高純氦氣,流速為1.0 mL.in-1,不分流,進樣量為5 μl,進樣口溫度250℃,傳輸線溫度280℃,起始溫度90℃,保持3 min,然后以10 ℃.min-1升至180℃,然后以3 ℃·mir-1升至280℃,保持10 min,然后以5℃.min-1升至300℃,保持8 min。EI電離70 eV,離子源溫度為230℃,四級桿溫度150℃,掃描方式為全掃描,掃描范圍m/z為50-550)分析測定樣品中的化學成分,采用標準數(shù)據(jù)庫NIST14和保留指數(shù)對沉香揮發(fā)油進行定性鑒別,將經(jīng)過預處理的數(shù)據(jù)導入Simca-P軟件進行數(shù)據(jù)分析,分析不同類型沉香間的差異,找出其差異標志物,同時對沉香特征性成分進行歸納分類比較,分析內(nèi)在質(zhì)量差異的原因。(3)采用 LC-QTOFMS 聯(lián)用儀(InetrSustainSwift C18 色譜柱(2.1×150 mm,1.9μn);流速:0.3ml/min;柱溫:40℃;流動相:乙腈(A):0.1%甲酸水溶液(B)梯度洗脫(0-3min,10%A;3-8min,10%-30%A;8-25min,30%-50%A;25-32min,50%-100%A,32-35min,100%A);進樣量:10μL;ESI離子源,正離子模式,一級質(zhì)譜(m/z 100~2000,DP100,CE 10,采集時間:0.2s),二級質(zhì)譜(m/z 50~2000,DP100,CE 45,采集時間:0.01s)分析測定樣品中的化學成分,對采集數(shù)據(jù)進行預處理后導入Simca-P軟件進行數(shù)據(jù)處理分析,分析不同類型沉香間的差異,找出其差異標志物,同時對沉香特征性成分進行歸納分類比較,分析內(nèi)在質(zhì)量差異的原因。結(jié)果:(1)52份沉香樣品中沉香四醇含量為0.10-6.60%,醇浸出物含量為6.07-57.06%,沉香醇浸出物與結(jié)香方式、種源無相關性,沉香四醇含量高低與種源、結(jié)香方式有一定的相關性(A.sinensis人工和天然沉香的沉香四醇平均含量分別為0.67%、0.15%,兩者比較有顯著差異,天然沉香中種源為A.malaccensis與A.crasna中沉香四醇平均含量分別為2.57%、0.70%,兩者有差異,且與A.sinensis(0.15%)有顯著差異)。(2)基于GCMS聯(lián)用技術(shù)經(jīng)過多元統(tǒng)計和單維統(tǒng)計分析篩選出不同種源和結(jié)香方式沉香的差異標志物共19個,分別為5個2-2-苯乙基色酮類成分、5個倍半萜類和其他類。通過OPLS-DA分析,A.sinensi 人工結(jié)香和天然沉香樣品有13個差異標志成分為色酮類、倍半萜類、烷烴類,其中2-(2-苯乙基)色酮、6,7-二甲氧基-2-(2-苯乙基)色酮、5,8-Dihydroxy-4a-methyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro-2(3H)-phenanthreno ne(isomer 1)、三十一烷(isomer 3)4個成分在兩組間具有顯著差異;A.crassna人工結(jié)香和天然結(jié)香樣品中的差異成分為2個倍半萜類成分;同時兩種不同種源人工結(jié)香沉香(A.sinensis和A.crassna人工結(jié)香沉香)的差異標志物有2個,其中5,8-Dihydroxy-4a-methyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro-2(3H)-phenanthrenone(isomer1)在兩組間具有顯著差異;通過對三個種源天然沉香對比分析,A.sinensi 沉香與A.c rassna沉香和A.malaccensis沉香的均有7個差異標志物,它們中具有顯著差異的標志性成分均為三十一烷(isomer 3),而其他組間并未發(fā)現(xiàn)具有顯著差異的成分。對52個沉香樣品中烷烴類、倍半萜和2-(2-苯乙基)色酮類成分峰面積進行歸納分類并進行統(tǒng)計分析,結(jié)果表明天然沉香中倍半萜含量較高多為A.crassna、A.mal accensis沉香,同時2-(2-苯乙基)色酮含量較高的也同樣為A.crassna A.malaccen sis沉香,而烷烴類較高的則主要A.sinensis天然沉香;對各組間不同類型成分的總峰面積比較分析表明在A.sinensi 沉香中人工和天然結(jié)香樣品中在烷烴類成分無顯著差異,而倍半萜和2-(2-苯乙基)色酮均存在差異,且人工結(jié)香沉香均高于天然沉香;A.crassn 沉香中人工和天然沉香間則顯示各類成分并無顯著差異;從兩組人工沉香(A.sinensis和A.crassna)樣品比較分析,各類成分并無顯著差異;三種天然沉香對比分析,其中A.sinensis天然沉香與A.malaccensis天然沉香在烷烴類和倍半萜類均存在差異,而A.sinensis天然沉香與A.c crassna天然沉香僅在烷烴類成分存在差異,其他組別和成分間并無顯著差異。聚類分類顯示人工沉香多能聚為一類,多數(shù)天然沉香也能夠聚為一類。(3)基于LCMS聯(lián)用儀對不同組別沉香樣品進行多元統(tǒng)計學和單維統(tǒng)計分析,找出123個差異標志物,通過一級和二級質(zhì)譜結(jié)合已有文獻,鑒別出62個化合物,其中23個為潛在新化合物。對同一種源人工沉香和天然沉香的比較分析,在A.sinensis沉香中發(fā)現(xiàn)45個差異物,15個具有顯著差異,而其中6個成分(2-(2-苯乙基)色酮、7-羥基-2-(2-苯乙基)色酮、6-甲氧基-2-(2-苯乙基)色酮(isomer 2)、6,8-二輕基-2-(2-苯乙基)色酮(isomer 1)、6-甲氧基-2-[2-(4'-甲氧基苯基)乙基]色酮、dehydroxy AH21)是A.sinensis中人工沉香和天然沉香間的主要標志性差異物,而A.crassna中人工沉香和天然沉香間的差異物有29個,具有顯著差異有7個,其主要標志性差異物為6,8-二羥基-2-(2-苯乙基)色酮(isomer1),AH21(isomer1)、methoxy AH21(isomer1)、2,3-二羥基-5-苯乙基-2,3-二氫-1ah-oxireno[2,3-f]chromen-7(7bh)-one(isomer 2)、dehydroxy AH21(isomer 2)5個成分。對同一結(jié)香方式不同種源沉香的比較分析,A sinensis與A.crassna的人工沉香間的差異物有36個,其中具有顯著差異的3個,AH12(isomer 3)為該兩組人工沉香中的主要標志性差異物。在天然沉香中,A.sinensis與A.malaccensis沉香的差異物有35個,具有顯著差異13個,其主要標志性差異物為6-甲氧基-2-[2-(4'-羥基-3'-甲氧基苯基)乙基]色酮(isomer 2)、6,8-二羥基-2-[2-(3'-羥基-4'-甲氧基苯基)乙基]色酮(i somer 2)、沉香四醇、6-羥基-7-甲氧基-2-[2-(4'-羥基-3'-甲氧基苯基)乙基]色酮(isomer 2)、2,3-二羥基-5-苯乙基-2,3-二氫-1ah-oxireno[2,3-f]chromen-7(7bh)-one(isomer 1)等5個成分;A.crassna與A.malaccensis沉香中的差異物有20個,具有顯著差異2個,其主要標志性差異物則為6-甲氧基-2-[2-(4'-羥基-3'-甲氧基苯基)乙基]色酮(isomer 2)、6,8-二羥基-2-[2-(3'-羥基-4'-甲氧基苯基)乙基]色酮(isomer 1)),其中其中6-甲氧基-2-[2-(4'-羥基-3'-甲氧基苯基)乙基]色酮(isomer 2)是A.malaccensis與A.sinensis和A.c rassna種天然沉香共同的主要標志性差異物;而A.sinensis與A.crassna沉香的差異物有6個,并未發(fā)現(xiàn)有顯著差異成分。同時結(jié)果顯示具有顯著共性特征苯環(huán)上羥基和甲氧基取代的2-(2-苯乙基)色酮類成分可能為有效辨識人工和天然沉香的標志性成分,而5,6,7,8-四氫-2-(2-苯乙基)色酮類和雙2-(2-苯乙基)色酮類成分則是區(qū)分不同種源沉香的關鍵物質(zhì)。對不同組別沉香的四種類型的2-(2-苯乙基)色酮類成分的峰面積進行比較研究,結(jié)果表明各組之間差異有所不同,5,6,7,8-四氫-2-(2-苯乙基)色酮類成分、雙2-(苯乙基)色酮類、三2-(苯乙基)色酮類成分在各組間多具有顯著差異;同時基于2-(2-苯乙基)色酮類成分對所有樣品進行聚類分類顯示人工和天然沉香多各自聚為一類。結(jié)論:本文基于GCMS和LCMS技術(shù),結(jié)合多維和單維統(tǒng)計建立了篩選沉香差異成分的方法。通過GCMS結(jié)合NIST 14質(zhì)譜庫鑒定出19個差異成分,其中具有顯著差異的有4個成分;本文首次基于LC-ESI-QTOF高分辨質(zhì)譜結(jié)合文獻從沉香中鑒定出62個差異成分,其中23個為潛在的新雙2-(2-苯乙基)色酮類化合物,通過多維和單維統(tǒng)計分析的方法,篩選出具有顯著差異的有27個;這些標志性成分可以作為沉香的品種鑒定、質(zhì)量控制及化學分類學指標成分。人工沉香和天然沉香的差異可能與苯環(huán)上有輕基和甲氧基取代的2-(2-苯乙基)色酮類成分密切相關;5,6,7,8-四氫-2-(2-苯乙基)色酮類和雙2-(2-苯乙基)色酮類成分則是區(qū)分不同種源沉香的關鍵物質(zhì)。對不同類型成分進行歸類分析,烷烴類、倍半萜類和2-(2-苯乙基)色酮類成分的高低在一定程度上能夠反映沉香內(nèi)在質(zhì)量差異,烷烴類成分越低,倍半萜類和2-(2-苯乙基)色酮類含量越高,其沉香樹脂含量越多,其質(zhì)量可能越好,反之,其質(zhì)量則越差;通過沉香內(nèi)在成分聚類研究,人工和天然沉香多各自聚為一類,不同組別的多能聚為一類,該方法能很好地將不同質(zhì)量的沉香進行聚類和區(qū)分。本文能夠為沉香的品種鑒別、質(zhì)量控制、品質(zhì)分類研究新的思路和方法。
[Abstract]:OBJECTIVE: The resin-containing wood of the genera Aquzlaria and Gyrinops mainly distributes in Guangdong, Hainan, Guangxi, Indonesia, Vietnam, Cambodia, Malaysia and other Southeast Asian countries. A. sinensis, and the imported source plants are mostly Aquilaria malaccensi, Aquilaria crassna. The quality of L. sinensis is closely related to provenance, aroma-forming methods and so on. Although modern molecular identification technology can identify L. sinensis primordia, but there is no effective method to distinguish the samples from the same source with different aroma-forming methods. It is not clear what differences exist among different types of aloes, and no screening method has been established to identify these components. Methods: According to the characteristics of the internal components of Chinese aloes, this paper makes use of modern advanced analytical instruments and statistical methods, uses GCMS and LCMS combined with multivariate statistics and single-dimensional analysis method to analyze the components of Chinese aloes comprehensively, supplemented by principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and other statistical methods to find out if not. Methods: (1) The content of alcohol extract was determined by HPLC (column Al) according to the relevant requirements of the Chinese Pharmacopoeia (2015 edition). TIMA C18 (150 mm x 4.6 mm, 5 micron), mobile phase acetonitrile (A) - 0.1% formic acid water (B), gradient elution, flow rate 0.7 mL min 1, detection wavelength 252 nm, column temperature 30 C) was used to determine the content of agaric tetraol in samples. The difference between different types of agaric incense was preliminarily analyzed by combining the results of alcohol extract and agaric tetraol content. Quartz capillary column (0.25 m m *30 m, 0.25 um), carrier gas is high-purity helium, flow rate is 1.0 mL.in-1, no diversion, injection volume is 5 microl, inlet temperature 250, transmission line temperature 280, starting temperature 90, holding for 3 minutes, then 10.M IN-1 to 180, then 3.Mir-1 to 280, holding 10 m in, then 5.M IN-1 to 300. EI was ionized at 70 eV for 8 min. The temperature of ion source was 230 C, the temperature of four-stage rod was 150 C. The scanning mode was full scanning, and the scanning range m/z was 50-550. The volatile oil was identified qualitatively by standard database NIST14 and retention index. According to the analysis, the differences among different types of aloes were analyzed to find out the markers of the differences, and the characteristic components of aloes were classified and compared to analyze the reasons for the internal quality differences. (3) LC-QTOFMS column (InetrSustain Swift C18 column) (2.1 *150 mm, 1.9 mun); flow rate: 0.3 ml/min; column temperature: 40; mobile phase: acetonitrile (A): 0.1% Formic acid aqueous solution (B) gradient elution (0-3 min, 10% A; 3-8 min, 10% - 30% A; 8-25 min, 30% - 50% A; 25-32 min, 50% - 100% A, 32-35 min, 100% A); sample size: 10 muL; ESI ion source, positive ion mode, first-order mass spectrometry (m/z 100-2000, DP100, CE 10, acquisition time: 0.2 s), secondary mass spectrometry (m/z 50-2000, DP100, CE 45, acquisition time: 0.01s) determination of samples. The chemical components were analyzed by Simca-P software after the data were pretreated. The differences between different types of aloes were analyzed to find out the markers of the differences. Meanwhile, the characteristic components of aloes were classified and compared, and the reasons for the internal quality differences were analyzed. 60% and 6.07-57.06% of the total alcohol extract, respectively. There was no correlation between the extract and the way of aroma formation, provenance, provenance, and the way of aroma formation. (2) Based on GCMS, 19 markers of different provenances and flavoring patterns were screened out by multivariate and single-dimensional statistical analysis, which were 5 2-2-phenylethyl chromones and 5 2-phenylethyl chromones, respectively. Sesquiterpenes and other compounds. According to OPLS-DA analysis, there are 13 different markers in A. sinensis artificial and natural aloes, including chromones, sesquiterpenes and alkanes, including 2-(2-phenylethyl) chromones, 6,7-dimethoxy-2-(2-phenylethyl) chromones, 5,8-Dihydroxy-4a-methyl-4,4a, 4b, 5,6,7,8,8a, 9,10-hydrodecane (3H) -phenanthreno ne (phenanthrene) There were significant differences between the two groups in the four components of Omer 1 and isomer 3, two sesquiterpenes in artificial and natural aroma-forming samples of A. crassna, and two different markers in artificial aroma-forming aroma of two different provenances (A. sinensis and A. crassna, artificial aroma-forming aroma), of which 5,8-Dihydroxy-4a-methyl-4, 4a, 4b, 5, 6, 7, 8, 8a, 9, 10-decahydro-2 (3H) - phenanthrenone (isomer1) had significant differences between the two groups; through the comparative analysis of natural aloes from three provenances, there were seven different markers between A. sinensis and A. C. rassna aloes and A. malaccensis aloes, and the significant differences in the marker components were isomer 3. The peak areas of alkanes, sesquiterpenoids and 2-(2-phenylethyl) chromones in 52 samples were classified and statistically analyzed. The results showed that the content of sesquiterpenoids in natural aloes was mainly A.crassna, A.mal accensis and 2-(2-phenylethyl) chromone. The higher was A. crassna A. malaccen sis, while the higher alkanes was A. sinensis. The total peak area of different types of components in A. sinensis showed no significant difference in alkanes between artificial and natural samples, while sesquiterpenes and 2 - (2-phenylethyl) chromone were both present. There was no significant difference between artificial and natural aromas of A. crassn. There was no significant difference between artificial and natural aromas of A. sinensis and A. crassna. There was no significant difference between the two groups of artificial aromas of A. sinensis and A. crassna. There were differences in alkanes and sesquiterpenes in SIS natural aloes, but only differences in alkanes were found between A. sinensis natural aloes and A. C. crassna natural aloes. There was no significant difference between other groups and components. 123 differential markers were identified by multivariate and single-dimensional statistical analysis. 62 compounds were identified by first-and second-order mass spectrometry combined with the existing literature, 23 of which were potential new compounds. 45 differences were found in the same provenance of artificial and natural aloes. Among them, 6 components (2-(2-phenylethyl) chromone, 7-hydroxy-2-(2-phenylethyl) chromone, 6-methoxy-2-(2-phenylethyl) chromone (isomer 2), 6,8-di-light-2-(2-phenylethyl) chromone (isomer 1), 6-methoxy-2-[2-(4'-methoxyphenylethyl) ethyl] chromone, dehydroxy AH21) are artificial precipitation and natural precipitation chromone in A.sinensis. Among them, 29 were the main markers, and 7 were significant differences. The main markers were 6,8-dihydroxy-2-(2-phenylethyl) chromone (isomer1), AH21 (isomer1), methoxy AH21 (isomer1), 2,3-dihydroxy-5-phenylethyl-2,3-dihydro-1ah-oxireno [2,3-f]chromen. 5 components of - 7 (7bh) - one (isomer 2), dehydroxy AH21 (isomer 2). Comparing and analyzing the different provenances of the same way of aroma formation, there were 36 differences between A. sinensis and A. crassna, of which 3 were significantly different. AH12 (isomer 3) was the main marker of the two groups of artificial aroma. There were 35 differences between NSIS and A. malaccensis, 13 of which were significant. The main markers were 6-methoxy-2-[2-(4'-hydroxy-3'-methoxyphenyl) ethyl] tryptone (i Somer 2), 6,8-dihydroxy-2-[2-(3'-hydroxy-4'-methoxyphenyl) ethyl] tryptone (somer 2), aloe tetraol, 6-hydroxy-7-methoxy-2-[2'-hydroxy-3'-hydroxy-3'-hydroxy-3'-hydroxy-ethyl] tryptone (i Somer 2). 5 constituents were isomer 2, 2,3-dihydroxy-5-phenylethyl-2,3-dihydro-1ah-oxireno [2,3-f] chromen-7 (7bh) -one (isomer 1). There were 20 differences between A. crassna and A. malaccensis, and the main marker difference was 6-methoxy-2-[2-(4'-hydroxy-3'-methoxyphenyl) ethyl] one (isomer 1). Isomer 2, 6,8-dihydroxy-2-[2-(3'-hydroxy-4'-methoxyphenyl) ethyl] chromone (isomer 1), in which 6-methoxy-2-[2-(4'-hydroxy-3'-methoxyphenyl) ethyl] chromone (isomer 2) is the main marker difference between A. The results showed that the hydroxyl and methoxy substituted 2-(2-phenylethyl) chromones on the phenyl ring may be the effective markers for the identification of artificial and natural aloes, while 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and bis-2-(2-phenylethyl) chromones are formed. The peak areas of 4 types of 2-(2-phenylethyl) chromones in different groups were compared. The results showed that the differences among the four groups were different, including 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones, bis-2-(phenylethyl) chromones, and tri-2-(phenylethyl) chromones. At the same time, all samples were clustered and classified based on 2-(2-phenylethyl) chromones. Conclusion: Based on GCMS and LCMS techniques, a method for screening the different components of Chinese traditional medicinal herbs was established by combining GCMS with NIST 14 mass spectrometry library. Nineteen different components were identified, of which four were significantly different. Based on LC-ESI-QTOF high-resolution mass spectrometry and literature, 62 different components were identified for the first time, 23 of which were potential new bis-2-(2-phenylethyl) chromones, and significant differences were screened out by multidimensional and single-dimensional statistical analysis. The differences between artificial and natural aloes may be closely related to 2-(2-phenylethyl) chromones with light and methoxy substitutes in the benzene ring; 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and bis-2-(2-phenylethyl) chromones. The contents of alkanes, sesquiterpenoids and 2-(2-phenylethyl) chromones can reflect the internal quality differences of Chinese aroma to some extent. The lower the alkanes, the higher the contents of sesquiterpenoids and 2-(2-phenylethyl) chromones, the higher the content of Chinese aroma. The more the resin content is, the better the quality may be, on the contrary, the worse the quality will be. Through Clustering Study on the intrinsic components of Chinese aloes, artificial and natural Chinese aloes are mostly clustered into one group, and the various groups are clustered into one group. This method can well classify and distinguish different quality of Chinese aloes. New ideas and methods for quality classification.
【學位授予單位】:廣州中醫(yī)藥大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:R284.1

【參考文獻】

相關期刊論文 前10條

1 楊錦玲;梅文莉;董文化;李薇;戴好富;;沉香GC-MS指紋圖譜分析[J];中成藥;2016年08期

2 鐘兆健;樊云飛;雷智東;潘清靈;周欣;劉岱琳;章衛(wèi)民;高曉霞;;天然沉香中白木香酸含量的高效液相色譜法測定[J];時珍國醫(yī)國藥;2016年01期

3 張倩;霍會霞;顧宇凡;趙云芳;李軍;屠鵬飛;;沉香藥材HPLC-DAD特征圖譜研究[J];中國藥學雜志;2015年03期

4 顧宇凡;張倩;霍會霞;黃正;張靜;趙云芳;李軍;屠鵬飛;;HPLC-DAD測定沉香藥材中沉香四醇的含量[J];世界科學技術(shù)-中醫(yī)藥現(xiàn)代化;2014年12期

5 楊錦玲;梅文莉;余海謙;楊德蘭;王佳媛;李薇;戴好富;;國產(chǎn)沉香HPLC指紋圖譜研究[J];中草藥;2014年23期

6 楊德蘭;梅文莉;楊錦玲;曾艷波;戴好富;;GC-MS分析4種奇楠沉香中致香的倍半萜和2-(2-苯乙基)色酮類成分[J];熱帶作物學報;2014年06期

7 安娜貝拉;陳穎;許敏;喻杰;劉麗芳;;沉香的質(zhì)量評價及藥理活性研究進展[J];中國野生植物資源;2014年02期

8 李薇;梅文莉;左文健;王昊;戴好富;;白木香的化學成分與生物活性研究進展[J];熱帶亞熱帶植物學報;2014年02期

9 梁食;梅全喜;吳惠妃;馮淑霞;劉特津;林煥澤;;沉香資源質(zhì)量的研究現(xiàn)狀與等級劃分的方法[J];時珍國醫(yī)國藥;2013年07期

10 薛水玉;王雪潔;孫海峰;張麗增;秦雪梅;李震宇;;基于氣質(zhì)聯(lián)用的款冬花蕾動態(tài)發(fā)育代謝組學特征分析[J];中國中藥雜志;2012年19期

相關會議論文 前1條

1 楊懋勛;陳河如;;土沉香(白木香)葉片抗腫瘤活性成分的研究[A];2011年全國藥物化學學術(shù)會議——藥物的源頭創(chuàng)新論文摘要集[C];2011年

相關博士學位論文 前1條

1 張興麗;傷害誘導的白木香防御反應與沉香形成的關系研究[D];北京林業(yè)大學;2013年

相關碩士學位論文 前1條

1 徐維娜;真菌侵染誘導沉香形成關鍵技術(shù)效果評價及結(jié)香機制初步研究[D];廣東藥學院;2011年

,

本文編號:2192032

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/2192032.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶65703***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com