藥物設計中鹵鍵、胍基-精氨酸作用及藥物合成反應過渡態(tài)的量子化學計算研究
本文選題:密度泛函理論 + 非共價相互作用; 參考:《中國科學院大學(中國科學院上海藥物研究所)》2017年博士論文
【摘要】:量子化學是用量子力學的原理和方法處理化學問題的科學,目前已經(jīng)發(fā)展成為化學以及相關學科在解釋和預測分子結構和化學行為等方面的通用技術和手段。本論文包含兩部分的研究內容,第一部分是量子化學計算方法在藥物設計中的應用研究,具體包括第二章分子內鹵鍵、第三章胍基-精氨酸配對作用和第四章藥物合成中的反應機理的研究內容;第二部分為結核桿菌二氫葉酸還原酶DHFR抑制劑的發(fā)現(xiàn)(第五章),研究內容為利用分子對接和質譜等技術手段,預測并驗證該重要結核病藥物靶點的天然產(chǎn)物抑制劑。論文第一章為緒論,分別闡述了非共價相互作用的量子化學計算、藥物設計中的鹵鍵作用、基于片段的結核病藥物設計研究背景。第二章圍繞鹵鍵的量子化學計算展開研究。在化學反應、物理現(xiàn)象及生命體系中,非共價相互作用都起著至關重要的作用。鹵鍵(XB)則是由鹵素原子(X=Cl、Br或I)作為路易斯酸,與中性或者帶負電荷的路易斯堿(如O、N、S等)相互吸引,形成的一種非共價相互作用。分子間的鹵鍵作用已被廣泛報道,但分子內的鹵鍵卻鮮有研究。我們通過搜索劍橋晶體數(shù)據(jù)庫(CSD)找到了具有典型分子內鹵鍵作用的小分子結構。接著運用量子化學計算中的密度泛函理論(DFT)方法對小分子化合物進行結構優(yōu)化與能量計算,研究不同取代基、不同溶劑對分子內鹵鍵性質的影響。通過比較不同構象(是否含有分子內鹵鍵)的能量差異,同時運用AIM(Atom in Molecule)理論分析鍵關鍵點(Bond Critical Point)處的電子密度、拉普拉斯電子密度等,我們確定了分子內鹵鍵的存在;再采用自然鍵軌道(Natural Bond Orbital,NBO)理論分析確定鹵鍵作用中電荷的轉移情況,從而確定本研究中分子內鹵鍵的作用強度在-1.66~-7.81 kcal/mol之間。在此基礎上,我們使用CPCM(導電極化連續(xù)介質)的溶劑化模型,計算溶劑化效應下分子內的鹵鍵作用,分析不同溶液中鹵鍵對小分子pKa的影響,發(fā)現(xiàn)含有碘的分子內鹵鍵結構與不含分子內鹵鍵結構的相對pKa差值為-0.73;還采用COSMO模型,比較分子內鹵鍵對小分子logP的影響,發(fā)現(xiàn)含分子內鹵鍵的結構其logP值在正辛醇和水中的分配系數(shù)略高于不含分子內鹵鍵的結構,為鹵鍵在藥物設計中的應用提供理論指導。論文的第三章圍繞生物體中胍基配體與蛋白質體系的精氨酸殘基之間形成的配對結構展開研究。通過數(shù)據(jù)庫搜索,我們首次發(fā)現(xiàn)在蛋白質數(shù)據(jù)庫(pdb,proteindatabank)中,一共存在227對在蛋白質配體和受體之間的帶相同電荷的胍基對作用(胍基正離子與精氨酸配對,gdm+-arg對)。該發(fā)現(xiàn)表明,在含胍基藥物和它們的靶標蛋白質之間確實可能存在胍基與精氨酸的結合作用。此外,通過對藥品數(shù)據(jù)庫(drugbank)的搜索,我們發(fā)現(xiàn)了145個含胍基的藥物,這表明藥物分子中,胍基是普遍存在的。另一些研究報告顯示,在某一些分子結構中,引入胍基基團使其與蛋白質體系形成gdm+-arg對結構,可以使藥物藥效提高8倍以上。在上述研究調查的基礎上,我們挑選出6個含有典型gdm+-arg對的配體-蛋白質復合物結構進行qm/mm計算。計算方法和基組為b97-d/6-311++g(d,p)。計算得到的胍基作用力強度在dmso和水中可以達到-1.0~-2.5kcal/mol,與普通分子間作用強度相當。計算結果也顯示,隨著介電常數(shù)的增加,gdm+-arg對的作用從排斥變?yōu)槲?表明高介電常數(shù)的溶劑對gdm+-arg對存在一定的穩(wěn)定作用。該研究顯示,帶相同電荷的gdm+-arg對之間的相互作用不僅可被用于調節(jié)藥物先導化合物的物理化學性質,也能用于改善配體結合蛋白質受體的親和力。論文的第四章使用密度泛函理論(dft)計算了兩個藥物合成反應的過渡態(tài),對其機理展開研究,并輔以實驗的支持。第一個反應中,我們研究了鈀催化下新型c-h活化反應的反應機制,通過四并六雙環(huán)的8-氨基喹啉類雙齒導向基-鈀-環(huán)狀中間體結構的活化模式,突破了傳統(tǒng)意義上只活化羰基β位的限制,發(fā)展了α位氧化反應的選擇性。理論計算得到了不同反應路徑中重要中間體的過渡態(tài)能量差異,顯示出獲得α及β兩種氧化產(chǎn)物的難易程度,從而有效解釋了反應機理。第二個反應中,我們通過計算吡啶酮類化合物合成反應中出現(xiàn)的季銨鹽中間體與不同親核試劑的反應,發(fā)現(xiàn)該反應具有良好的區(qū)域選擇性。通過季銨鹽與不同親核試劑首先形成的過渡態(tài)結構的能壘高低可以判斷反應的難易,從而實現(xiàn)對反應路徑的預測。論文第五章圍繞結核病靶點二氫葉酸還原酶dhfr的抑制劑發(fā)現(xiàn)展開研究。結核病是一種全球性的傳染性疾病,每年造成兩百萬以上人口死亡,F(xiàn)階段的結核病存在抗藥性和多重耐藥性等問題,使結核病的治療面臨更加嚴峻的問題。我們利用之前得到的10個結核病相關的蛋白靶點和從天然產(chǎn)物數(shù)據(jù)庫中檢測出的26個低分子量化合物相互作用形成的網(wǎng)絡圖,通過基于片段的藥物設計的理念,將其中一個結核病靶點蛋白DHFR和與其有結合的片段化合物進行分子對接,找到小分子的結合位點并預測其相互結合模式。對接的結果中,如果某些片段化合物的結合位點與其它片段化合物明顯不同,則將這些結合模式特殊的分子固定于蛋白口袋的結合位置,再將其它片段化合物對接到靶點蛋白和固定片段化合物的復合物的口袋中。將片段化合物單獨對接與對接到復合物中的作用模式進行對比分析,找出結合模式相似的化合物,說明這些化合物和固定在蛋白口袋中的片段化合物可能同時結合到蛋白口袋中。再用傅里葉變換的質譜方法(FTMS)對分子對接結果進行驗證,用實驗方法找出可以同時與結核病靶點蛋白DHFR結合的兩個片段化合物。質譜實驗發(fā)現(xiàn)四對化合物可以單獨或同時與Mtb DHFR蛋白結合。對接結果與實驗結果十分吻合。第六章為總結與展望。
[Abstract]:Quantum chemistry is the treatment of chemical problems with the principle and method of quantum mechanics science, has now become the chemistry and related disciplines to explain and predict the molecular structure and chemical behavior of the general techniques and methods. This thesis consists of two parts of the research contents, the first part is the application of quantum chemical methods in drug design the second chapter, including the intramolecular halogen bond, research content of reaction mechanism of arginine pairing function and the fourth chapter in the third chapter of drug synthesis of guanidine; the second part of the discovery of Mycobacterium tuberculosis dihydrofolate reductase inhibitors of DHFR (the fifth chapter), the research content is using molecular docking and mass spectrometry techniques to predict and verify the natural the important product inhibitor TB drug targets. The first chapter is the introduction, respectively expounds the quantum chemical calculation of non covalent interactions, drug Halogen bonds in the design of TB drug design research background fragments based on quantum chemistry. The second chapter focuses on the calculation of halogen bond is researched. In chemical reaction, physical phenomena and life system, non covalent interactions play a crucial role. Halogen bond (XB) is composed of a halogen atom (X=Cl, Br or I) as Lewis acid, neutral or negative charge and with Lewis base (such as O, N, S etc.) are attracted to each other, a non covalent interaction. The formation of halogen bond intermolecular interactions have been widely reported, but the intramolecular halogen bond is rarely studied. We search through the Cambridge crystal the database (CSD) to find a small molecular structure with typical intramolecular halogen bond. Then by using the density functional theory in quantum chemistry calculation (DFT) method was used to optimize the structure and energy calculation of small molecular compound of different substituents, different solvents on intramolecular Effect of halogen bonding properties. By comparing the different conformation (containing intramolecular halogen bond) energy difference, while the use of AIM (Atom in Molecule) theory analysis of key points (Bond Critical Point) the electron density of the Laplasse electron density, we determine the intramolecular halogen bond exists; then the natural bond track (Natural Bond Orbital, NBO) theoretical analysis to determine the charge transfer effect of halogen bond, so as to determine the intensity of molecules in this study in the halogen bond in -1.66~-7.81 kcal/mol. On this basis, we use CPCM (conductive polarizable continuum) solvation model, calculation of halogen bonds molecular solvation effect the analysis of the effect of halogen bond in different solutions for small molecule pKa, found that the halogen bond structure of molecular iodine containing and not containing halogen bond in the molecule structure of relative difference was -0.73 pKa; using COSMO model, comparison Effect in halogen bonding of small molecule logP, found that the structure with intramolecular halogen bond and its logP value distribution coefficient in octanol and water is slightly higher than the structure without intramolecular halogen bond, to provide theoretical guidance for the application of halogen bond in drug design. Research on the structure formed between the third chapter the organisms in guanidine based ligands and protein system arginine residues. Through database search, we first found in protein databases (PDB, proteindatabank), there were a total of 227 of the protein between the ligand and the receptor with the same charge of positive ions (guanidine guanidine and arginine on gdm+-arg pairing). The findings suggest that between guanidine containing drugs and their target proteins may indeed exist with arginine guanidino binding acid. In addition, the drug database (drugbank) search, we found 145 This shows that the guanidino containing drugs, drug molecules, guanidine is widespread. Some other research report shows that in some of the molecular structure, introducing guanidine groups to form gdm+-arg on the structure and protein system, can make the drugs increase more than 8 times. Based on the above research, we selected 6 a typical gdm+-arg structure containing ligand of the protein complexes of qm/mm. The calculation method and basis set for b97-d/6-311++g (D, P). The calculated guanidino force strength can reach -1.0~-2.5kcal/mol and DMSO in the water, and the general strength between molecules. The results also showed that with the increase of dielectric constant. Effect of gdm+-arg on from repulsion to attraction, showed a high dielectric constant solvent of gdm+-arg to stable effect. The study shows that with the same charge gdm+-arg on the interaction between Not only can be used to regulate the physical and chemical properties of lead compounds, can also be used to improve the affinity of the receptor ligand binding protein. In the fourth chapter, using the density functional theory (DFT) transition state two drug synthesis reaction were calculated and studied the mechanism, along with experimental support. The first reaction. We have studied the reaction mechanism of new palladium catalyzed by C-H activation by 8- aminoquinolines, four and six bis bidentate palladium base oriented cyclic intermediate structure activation mode, break through the traditional sense only limit the activation of carbonyl beta, the development of selective alpha oxidation reaction. Theoretical calculation has been the transition state energy difference is an important intermediate in different reaction paths, showing the degree of difficulty of obtaining alpha and beta two oxidation products, so as to effectively explain the reaction mechanism. Second reactions, we Calculation of pyridone compounds in the synthesis reaction of quaternary ammonium intermediates with different nucleophiles reaction, the reaction with high regioselectivity. The structure transition state through quaternary ammonium salt with different nucleophiles first formed the energy barrier height can determine the reaction easily, so as to realize the prediction of the reaction path of the fifth. Chapter around the target dihydrofolate reductase inhibitor tuberculosis DHFR discovery research. Tuberculosis is a global infectious disease, caused each year more than two million of the population died. At the present stage tuberculosis drug resistance and multi drug resistance, so that the treatment of tuberculosis is facing more severe problems. We use the network diagram before the 10 TB related the target protein and 26 low molecular weight compounds detected from natural products database in the form of interaction, through The drug design based on the concept of fragments, which will be a target of tuberculosis protein DHFR and its fragment binding of compounds by molecular docking, find a small molecule binding site and its combination model. The results of docking, if some fragments of compounds binding sites and other fragments of compounds will be significantly different with the location of the binding mode of special molecules fixed on the protein pocket, and the pocket other fragments compounds on the complex received target proteins and fixed fragment compounds. The compounds will be docking with the docking to separate fragments of mode of action in the complexes were analyzed, and find out the similar patterns of these compounds, and compounds fixed in the pocket protein fragment compound may also bind to the protein pocket. Then Fourier transform mass spectrometry (FTMS) on the The results are verified by experimental method can find two compounds simultaneously with the target fragment of tuberculosis protein DHFR binding. Mass spectrometry experiments found that four of compounds can be individually or simultaneously with Mtb DHFR binding protein. The docking results agree well with the experimental data. The sixth chapter is the summary and outlook.
【學位授予單位】:中國科學院大學(中國科學院上海藥物研究所)
【學位級別】:博士
【學位授予年份】:2017
【分類號】:R91
【相似文獻】
相關期刊論文 前10條
1 李中華,裴印權,庫寶善;胍基琥珀酸促進小鼠學習和記憶的作用(英文)[J];中國藥理學與毒理學雜志;2001年01期
2 楊世安;;ND-54萘莫司他[J];中國醫(yī)藥工業(yè)雜志;1993年02期
3 王賢杰,何韶衡;含胍基類肥大細胞類胰蛋白酶抑制劑的特性及功能研究進展[J];中國藥學雜志;2004年10期
4 許勤龍;周鵬;李家明;張恩立;胡敏華;;N-(4-胍基丁基)丁香酰胺對家兔血小板聚集性的影響[J];安徽醫(yī)藥;2012年12期
5 劉宗英;李卓榮;陶佩珍;邵華一;王淑琴;;胍基取代環(huán)戊烷衍生物的合成與抗病毒活性研究[J];中國抗生素雜志;2006年09期
6 夏初臨,陳惠黎;谷胱甘肽S-轉移酶活性中心的研究—羧基、氨基和胍基的化學修飾[J];生物化學雜志;1991年03期
7 楊波;顏天銘;李春竹;王志娣;蔣云生;段紹斌;;苯磺酸左旋氨氯地平對胍基丙酸加重殘余腎功能損害的干預研究[J];中國現(xiàn)代醫(yī)學雜志;2014年24期
8 嚴為淳;;1-N-[4-取代脒基/胍基-2-羥丁酰基]卡那霉素A與B的合成及其生物活性[J];國外醫(yī)藥(抗生素分冊);1993年03期
9 何東賢;陳林;趙經(jīng)偉;劉家健;;氨基糖苷類化合物的研究動向——含胍基的氨基糖苷類衍生物[J];國外醫(yī)藥(抗生素分冊);2006年02期
10 曹玲華;楊金鳳;田曉紅;;新型胍基半乳糖苷的合成及生物活性研究[J];新疆大學學報(自然科學版);2006年03期
相關會議論文 前2條
1 張杰;蔡瑞芳;翁林紅;周錫庚;;異氰酸苯酯插入稀土-胍基配體鍵反應[A];中國化學會第十三屆金屬有機化學學術討論會論文摘要集[C];2004年
2 張杰;蔡瑞芳;翁林紅;;新型含類胍基配體的茂基稀土衍生物的合成及晶體結構[A];中國化學會第十三屆金屬有機化學學術討論會論文摘要集[C];2004年
相關博士學位論文 前7條
1 楊洋;藥物設計中鹵鍵、胍基-精氨酸作用及藥物合成反應過渡態(tài)的量子化學計算研究[D];中國科學院大學(中國科學院上海藥物研究所);2017年
2 韋長梅;胍基化合物的合成與晶體結構研究[D];南京工業(yè)大學;2004年
3 王磊;L-精氨酸鹽溶液中磷酸與胍基相互作用研究及新晶體制備[D];山東大學;2014年
4 曾廷華;橋聯(lián)雙芳氧基稀土金屬胍基配合物的合成、表征及其催化性能[D];蘇州大學;2014年
5 錢存衛(wèi);胍基稀土化合物的合成及催化性能的研究[D];蘇州大學;2010年
6 鄭鵬志;稀土雙負離子胍基配合物的合成及反應性研究[D];復旦大學;2010年
7 楊建海;葡聚糖—胍基丁胺衍生物非病毒轉基因載體[D];天津大學;2012年
相關碩士學位論文 前10條
1 趙澤芳;胍基修飾的5-甲基-吲哚[2,3-b]喹啉衍生物的合成、表征及初步抗腫瘤活性研究[D];四川醫(yī)科大學;2015年
2 楊國慶;堿性季銨膜中OH~-傳遞及胍基咪唑降解研究[D];大連理工大學;2016年
3 陳瑩瑩;典型胍基化合物熱穩(wěn)定性研究[D];南京理工大學;2017年
4 劉永華;6-脫氧-6-胍基葡萄糖甲苷的合成及生物活性研究[D];新疆大學;2008年
5 楊慧;陽離子聚合物的合成及胍基化修飾對基因轉染性能的影響[D];南京理工大學;2010年
6 曹學武;胍基丁胺對大鼠肺動脈平滑肌細胞增殖的影響及機制的初步研究[D];第三軍醫(yī)大學;2004年
7 劉藝群;一種抗菌性胍基化殼聚糖材料的制備及其抗菌評價[D];華中科技大學;2012年
8 顏天銘;苯磺酸左旋氨氯地平對胍基丙酸加重殘余腎功能損害的干預研究[D];南華大學;2013年
9 龐園園;幾種含氮雜環(huán)藥物中間體的合成研究[D];山東師范大學;2012年
10 李猛;含胍基或脒基稀土烷基化合物的合成及反應性研究[D];復旦大學;2012年
,本文編號:1744600
本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/1744600.html