最優(yōu)映射計(jì)算與網(wǎng)格生成
[Abstract]:Digital geometry plays an increasingly important role in scientific research, engineering calculation and cultural entertainment. The process of using mathematical models and algorithms to analyze and process digital geometry data is called digital geometry processing. This is a cross-cutting research subject, including computer science, applied mathematics and engineering. Common research contents include model acquisition, model reconstruction, grid generation, shape analysis and understanding, mapping calculation and geometric modeling. Our research is directed to two sub-topics in digital geometry: optimal mapping calculation and optimal mesh generation. The optimal mapping calculation is an important task, and it is the core of many computer graphics applications, such as mesh parameterization, mesh deformation, mesh quality enhancement and hexahedral mesh generation. Optimal grid generation is the cornerstone of grid data processing, for example, in finite element method, it has strong demand for anisotropic mesh and hexahedral mesh, because they can obtain better calculation accuracy than isotropic grid and tetrahedron grid. Optimal mapping calculations can be used as post-processing techniques for grid generation to improve the quality of the grid. In this paper, a novel energy function and optimization method are designed from the viewpoint of optimization, and they are successfully applied to the optimal mesh mapping calculation, anisotropic mesh generation and multi-cubic structure (Polygon) to automatically generate these three topics, as follows: A good mapping algorithm needs to ensure no inversion, low deformation and high computational efficiency. existing algorithms do not guarantee these characteristics at the same time. In this paper, an enhanced deformation minimizing energy (AMIPS) is designed, and a non-accurate block coordinate rotation descent algorithm (inact BCD) is used to rapidly calculate the optimal mapping without inversion. The AMIPS energy function inherits the traditional deformation minimization energy (MIPS) to ensure the non-turning property, and also can control the maximum deformation. The inact BCD optimization algorithm avoids the optimization process to fall into local minimum prematurely. Combined with the AMIPS energy function and the inact BCD optimization algorithm, this paper improves the efficiency and quality of mapping. The advantages of our algorithm are fully reflected in the application of mesh parameterization, two-dimensional triangular mesh and three-dimensional tetrahedral mesh deformation, two-dimensional and three-dimensional non-mesh deformation, anisotropic tetrahedron and hexahedral mesh quality improvement. However, the AMPS algorithm also suffers from the disadvantage that, for example, there is no support for grid deformation with many control points and is sensitive to initial mapping. In this paper, a method of assembling and separating grid cells is presented to calculate the optimal mapping without inversion. our approach accepts arbitrary mesh mapping as input that may be present with numerous flip-grid cells. we first separate all grid cells of the grid, keep the mapping on each grid cell low, and then calculate the optimal mapping without inversion by simultaneously optimizing the distance between the deformation and the separation vertex. Since the affine transformation on each grid cell is used as the optimization variable, we can get the optimal mapping by solving an unconstrained nonlinear non-convex optimization problem. The robustness and efficiency of our algorithm are also embodied in the application of planar mesh parameterization, grid deformation and so on. Anisotropic grids are very important in geometric modeling, physical simulation and mechanical engineering. Local Contex Triangulation (LCT) method is proposed for the generation of high-quality anisotropic grids. An anisotropic mesh generation problem is transformed into a function approximation problem by entering a surface, or a three-dimensional space region as a domain, and a known Riemann metric field on the domain. A locally convex function is constructed on each mesh cell, whose Hessian matrix is locally coincident with the input Riemann metric. I use the strategy of alternately updating the grid vertex position and changing the mesh connection relationship to reduce the function approximation error. Our LCT method extends the optimal Dealunay Triangulation (ODT), and can accept generalized Riemann metric fields as inputs and grids suitable for sharp variations of the Riemann metric field and the presence of sharp features. From the two-dimensional plane region, the three-dimensional space region and the anisotropic grid generated on the three-dimensional curved surface, we have high algorithm efficiency and high grid quality. In applications such as physical simulation and mechanical engineering, hexahedral meshes tend to have better properties than tetrahedral grids, such as fewer grid cells and higher calculation accuracy. In this paper, a hexahedral mesh is generated by high quality multi-cube structure. The multi-cube structure requires strict alignment with the X, Y, and Z axes of the surface triangle of the grid. The previous algorithm can not guarantee the four properties of non-inversion, low deformation, singularity controllability and calculation. This paper uses the inact BCD algorithm to optimize the surface method to smooth and align energy, which is used to drive the deformation of the mesh and eliminate the limit points automatically, so as to automatically generate the high-quality multi-cube structure. We introduce the kernel width of smooth function to control the singularity of multi-cube structure. The high efficiency of the inact BCD algorithm makes the efficiency of this algorithm far higher than that of the most advanced algorithm. The quality and efficiency of our algorithm are greatly improved compared with the most advanced algorithms in terms of the deformation of multi-cubic mapping and the results of six-and-body grid cattle.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 江雄心;萬平榮;;整體規(guī)劃技術(shù)在三維有限元網(wǎng)格生成中的應(yīng)用[J];鍛壓技術(shù);2006年06期
2 趙廣文;;數(shù)值網(wǎng)格生成方法[J];航空計(jì)算技術(shù);1992年03期
3 買買提明·艾尼,古麗巴哈爾·瓦哈甫;用局部阻尼波形法的自連貫網(wǎng)格生成法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年06期
4 賈超;張樹壯;;支持裂紋擴(kuò)展的三維有限元網(wǎng)格生成算法[J];計(jì)算機(jī)工程與應(yīng)用;2006年31期
5 聶玉峰;常升;;基于節(jié)點(diǎn)的局部網(wǎng)格生成算法[J];計(jì)算力學(xué)學(xué)報(bào);2006年02期
6 孫春華;陳雪芳;姜左;Hagiwara Ichiro;;基于Gregory法的N邊域非自交結(jié)構(gòu)網(wǎng)格生成[J];計(jì)算機(jī)應(yīng)用;2007年12期
7 盧章平,趙泉;基于“邊折疊”的可逆累進(jìn)網(wǎng)格生成算法的研究[J];工程圖學(xué)學(xué)報(bào);2004年01期
8 蒙茂洲;;功能強(qiáng)大的網(wǎng)格生成軟件——TrueGrid[J];CAD/CAM與制造業(yè)信息化;2010年01期
9 陳蔚蔚;聶玉峰;張偉偉;王磊;;高質(zhì)量點(diǎn)集的快速局部網(wǎng)格生成算法[J];計(jì)算力學(xué)學(xué)報(bào);2012年05期
10 胡洋瑞;龍永春;周浩;張莉;吳開騰;;基于改進(jìn)陣面推進(jìn)法的三維網(wǎng)格生成算法研究[J];內(nèi)江師范學(xué)院學(xué)報(bào);2013年08期
相關(guān)會議論文 前10條
1 郭高娟;劉劍飛;;狹窄區(qū)域的邊界層網(wǎng)格生成[A];北京力學(xué)會第20屆學(xué)術(shù)年會論文集[C];2014年
2 陳建軍;鄭耀;;并行三維非結(jié)構(gòu)性網(wǎng)格生成[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
3 張艷英;蘇杰先;崔明根;;多維流場的貼體網(wǎng)格生成方法[A];第一屆全國流體動力及控制工程學(xué)術(shù)會議論文集[C];2000年
4 盧笙;葉友達(dá);;空天飛行器建模及計(jì)算網(wǎng)格生成[A];計(jì)算流體力學(xué)研究進(jìn)展——第十二屆全國計(jì)算流體力學(xué)會議論文集[C];2004年
5 梁義;陳建軍;陳立崗;鄭耀;;二維并行網(wǎng)格生成及劃分[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年
6 劉周;周偉江;;適于粘性計(jì)算的自適應(yīng)笛卡爾網(wǎng)格生成[A];全國計(jì)算物理學(xué)會第六屆年會和學(xué)術(shù)交流會論文摘要集[C];2007年
7 洪方文;張志榮;韋喜忠;黃國富;;轉(zhuǎn)子+導(dǎo)管系統(tǒng)的網(wǎng)格生成研究[A];2008年船舶水動力學(xué)學(xué)術(shù)會議暨中國船舶學(xué)術(shù)界進(jìn)入ITTC30周年紀(jì)念會論文集[C];2008年
8 劉劍飛;;網(wǎng)格生成研究進(jìn)展[A];北京力學(xué)會第18屆學(xué)術(shù)年會論文集[C];2012年
9 韓旭里;劉新儒;包崇兵;;帶形狀控制參數(shù)的網(wǎng)格生成方法[A];中國計(jì)算機(jī)圖形學(xué)進(jìn)展2008--第七屆中國計(jì)算機(jī)圖形學(xué)大會論文集[C];2008年
10 肖涵山;陳作斌;劉剛;程克明;;基于STL文件的自適應(yīng)笛卡爾網(wǎng)格生成[A];計(jì)算流體力學(xué)研究進(jìn)展——第十二屆全國計(jì)算流體力學(xué)會議論文集[C];2004年
相關(guān)博士學(xué)位論文 前4條
1 傅孝明;最優(yōu)映射計(jì)算與網(wǎng)格生成[D];中國科學(xué)技術(shù)大學(xué);2016年
2 梁義;自適應(yīng)表面網(wǎng)格生成研究[D];浙江大學(xué);2009年
3 黃橙;用于邊界面法的三維體網(wǎng)格生成方法[D];湖南大學(xué);2014年
4 張沐陽;高質(zhì)量可控四邊網(wǎng)格生成技術(shù)[D];浙江大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 高宇海;基于時域有限差分方法的網(wǎng)格生成新方法[D];國防科學(xué)技術(shù)大學(xué);2011年
2 曹建;適應(yīng)復(fù)雜外形粘性流動模擬的混合網(wǎng)格生成算法[D];浙江大學(xué);2013年
3 金雋;網(wǎng)格生成算法研究和軟件實(shí)現(xiàn)[D];復(fù)旦大學(xué);2008年
4 王敏;三維復(fù)雜形體表面網(wǎng)格生成方法研究[D];南京理工大學(xué);2005年
5 常升;基于節(jié)點(diǎn)的局部網(wǎng)格生成算法研究[D];西北工業(yè)大學(xué);2006年
6 褚江;非結(jié)構(gòu)動網(wǎng)格生成方法研究[D];南京理工大學(xué);2006年
7 韓宏偉;非結(jié)構(gòu)性網(wǎng)格生成及其后處理技術(shù)研究和實(shí)現(xiàn)[D];浙江大學(xué);2008年
8 張永華;葉輪機(jī)CFD網(wǎng)格生成[D];南京航空航天大學(xué);2007年
9 王彩玲;基于CAD三維表面網(wǎng)格生成與應(yīng)用[D];南京理工大學(xué);2004年
10 曾麗娟;面向自適應(yīng)參數(shù)曲面網(wǎng)格生成的非結(jié)構(gòu)單元尺寸場理論及算法[D];浙江大學(xué);2014年
本文編號:2307898
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2307898.html