基于輪廓誤差的新型混聯(lián)式汽車(chē)電泳涂裝輸送機(jī)構(gòu)同步協(xié)調(diào)控制研究
[Abstract]:In the modern automobile manufacturing industry, painting is the key process, and the conveyor works in the whole process of automobile painting production line. Its performance has a great impact on the surface treatment effect of the white body. Under the support of the National Natural Science Foundation of China (51375210), a new type of automotive electrophoretic coating conveyor was developed based on the hybrid mechanism to compensate for the shortcomings of the above conveyor. The new conveyor developed by our research group has many advantages. There is coupling between active joints and two symmetrical mechanical structures, so synchronous coordination between active joints affects the overall performance of the mechanism. For a new type of hybrid transmission mechanism, when the kinematics and dynamics control method is used directly in the series mechanism, it is neglected that the hybrid mechanism includes more than one. In order to ensure the smooth and reliable operation of the conveying mechanism in various working environments, it is necessary to improve the synchronous coordination among the active joints. Firstly, the tracking error, synchronous error and design between the active joints are defined. A synchronous coordination controller based on active joint synchronization error is proposed. However, although the tracking error of active joints is reduced, the reduction of tracking error does not necessarily reduce the contour error, so it is difficult to guarantee the tracking accuracy of the end of the mechanism. In the system, the main index to measure the tracking accuracy of the end trajectory of the mechanism is the contour error. The other errors in the hybrid mechanism system all respond to the contour error eventually. Therefore, in order to improve the tracking accuracy of the end trajectory of the mechanism, a method for estimating the contour error of the end trajectory of the mechanism is proposed, and a method based on the contour error is designed. Synchronous coordinated controller can not only reduce the tracking error and synchronous error of active joints, but also improve the trajectory tracking accuracy of the end of the mechanism. Firstly, this paper summarizes the development of existing automotive electrophoretic coating conveyor and hybrid mechanism, and the research status of contour error control based on it. The kinematics and dynamics analysis of the transport mechanism of automotive electrophoretic coating are carried out, and the results of kinematics and dynamics analysis are simulated by MATLAB. The simulation results show the correctness of kinematics analysis and dynamics analysis. At the same time, the transport is determined according to the requirements of automotive electrophoretic coating process and the parameters of the prototype developed by reducing the proportion. The desired trajectory of the end effector of the mechanism is analyzed, and the workspace of the prototype is analyzed, and the schematic diagram of the workspace is given. Secondly, in order to solve the problem of synchronous coordination among the moving branches and chains in the running process of the conveyor mechanism and the problem of the error of the end contour of the prototype, a passing phase is proposed according to its structure and motion characteristics. Active joint synchronization error is defined by the deviation of tracking error of adjacent active joints, and an active joint synchronization and coordination controller is designed based on the deviation of tracking error of adjacent active joints. Compared with the active joint synchronous coordinating controller, the simulation results show that the control algorithm has higher trajectory tracking accuracy and further improves the synchronous coordinating motion performance of the conveying mechanism because of further reducing the profile error of the end of the mechanism. According to the control requirements of conveyor mechanism, a prototype experimental platform of conveyor mechanism is constructed, and the control experiment of conveyor mechanism is completed based on this platform. The experimental results further verify the effectiveness of the controller based on contour error control designed in this paper.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U468.2;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莊丙遠(yuǎn);趙國(guó)勇;翟靜濤;侯春宏;;雙轉(zhuǎn)臺(tái)五軸聯(lián)動(dòng)數(shù)控機(jī)床輪廓誤差控制方法[J];組合機(jī)床與自動(dòng)化加工技術(shù);2016年06期
2 高國(guó)琴;陳太平;方志明;;新型汽車(chē)電泳涂裝輸送機(jī)構(gòu)的動(dòng)力學(xué)建模[J];機(jī)械工程學(xué)報(bào);2016年21期
3 白一尚;王東勃;朱鋒;靳廣在;;基于CCC的移動(dòng)目標(biāo)模擬器輪廓誤差控制與仿真[J];機(jī)械科學(xué)與技術(shù);2016年02期
4 牛雪梅;高國(guó)琴;劉辛軍;鮑智達(dá);;新型驅(qū)動(dòng)冗余并聯(lián)機(jī)構(gòu)動(dòng)力學(xué)建模及簡(jiǎn)化分析[J];機(jī)械工程學(xué)報(bào);2014年19期
5 郭希娟;張濤;王玉鎮(zhèn);奚風(fēng)豐;;一種共軸混聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)分析[J];機(jī)械工程學(xué)報(bào);2014年11期
6 陳小立;嚴(yán)宏志;溫廣旭;;基于遺傳算法的四自由度混聯(lián)機(jī)器人軌跡規(guī)劃[J];計(jì)算機(jī)仿真;2014年05期
7 田浩;余躍慶;;柔順關(guān)節(jié)并聯(lián)機(jī)器人動(dòng)力學(xué)建模與控制研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年05期
8 趙歡;朱利民;丁漢;;基于高精度輪廓誤差估計(jì)的交叉耦合控制[J];機(jī)械工程學(xué)報(bào);2014年03期
9 Xue-Mei Niu;Guo-Qin Gao;Xin-Jun Liu;Zhi-Da Bao;;Dynamics and Control of a Novel 3-DOF Parallel Manipulator with Actuation Redundancy[J];International Journal of Automation and Computing;2013年06期
10 孫自松;許能才;李建國(guó);萬(wàn)德俊;申標(biāo);;Rodip系統(tǒng)在涂裝電泳線上的應(yīng)用[J];汽車(chē)工藝與材料;2013年08期
相關(guān)博士學(xué)位論文 前9條
1 牛雪梅;新型3-DOF驅(qū)動(dòng)冗余并聯(lián)機(jī)構(gòu)動(dòng)力學(xué)建模及其滑?刂蒲芯縖D];江蘇大學(xué);2014年
2 張剛;直驅(qū)精密平面并聯(lián)運(yùn)動(dòng)平臺(tái)的動(dòng)力學(xué)建模與輪廓控制[D];上海交通大學(xué);2014年
3 梁順攀;五自由度冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu)性能分析與力/位混合控制研究[D];燕山大學(xué);2013年
4 郝齊;一種兩自由度并聯(lián)機(jī)構(gòu)優(yōu)化設(shè)計(jì)及動(dòng)力學(xué)控制研究[D];清華大學(xué);2011年
5 陳月巖;串—并混聯(lián)研拋機(jī)床運(yùn)動(dòng)控制系統(tǒng)的研究[D];吉林大學(xué);2009年
6 楊永剛;6-PRRS并聯(lián)機(jī)器人關(guān)鍵技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2008年
7 尚偉偉;平面二自由度并聯(lián)機(jī)器人的控制策略及其性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年
8 劉玉斌;一種新型6-PRRS并聯(lián)機(jī)器人系統(tǒng)的研究[D];哈爾濱工業(yè)大學(xué);2007年
9 張耀欣;高性能平面二自由度并聯(lián)機(jī)器人研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 陳太平;新型混聯(lián)式汽車(chē)電泳涂裝輸送機(jī)構(gòu)動(dòng)力學(xué)建模及二階滑?刂蒲芯縖D];江蘇大學(xué);2016年
2 曹祥;混聯(lián)式輸送機(jī)構(gòu)的計(jì)算機(jī)控制系統(tǒng)構(gòu)建及考慮執(zhí)行器飽和的控制研究[D];江蘇大學(xué);2016年
3 黃敏;新型混聯(lián)式汽車(chē)電泳涂裝輸送機(jī)構(gòu)結(jié)合擾動(dòng)觀測(cè)器的滑?刂芠D];江蘇大學(xué);2016年
4 周延松;三軸數(shù)控系統(tǒng)的輪廓誤差補(bǔ)償方法研究與實(shí)現(xiàn)[D];浙江工業(yè)大學(xué);2013年
5 黃天宇;新型少自由度混聯(lián)機(jī)構(gòu)的力學(xué)分析[D];燕山大學(xué);2013年
6 田培濤;并聯(lián)機(jī)器人運(yùn)動(dòng)誤差分析與補(bǔ)償方法研究[D];燕山大學(xué);2012年
7 姚莉君;三自由度平動(dòng)并聯(lián)機(jī)構(gòu)的動(dòng)力學(xué)與控制系統(tǒng)研究[D];南京航空航天大學(xué);2012年
8 孔繁星;切線回轉(zhuǎn)法加工高次非球面光學(xué)零件軌跡成形控制研究[D];長(zhǎng)春理工大學(xué);2010年
9 劉涼;3-RRRU并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)控制的研究[D];天津理工大學(xué);2010年
10 朱加輝;兩輪自平衡小車(chē)反饋線性化及變結(jié)構(gòu)控制研究[D];西安電子科技大學(xué);2010年
,本文編號(hào):2216324
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2216324.html