基于Hammerstein模型壓電陶瓷執(zhí)行器遲滯非線性建模及控制方法
[Abstract]:Micro / nano actuators are the core components of micro / nano positioning technology. It is very important to find good actuator materials to improve the precision of micro / nano positioning. Piezoelectric ceramic is a kind of intelligent actuator material which can convert mechanical and electrical energy. It has many advantages such as low price, light mass, fast frequency response, high displacement precision, high driving force and so on. In recent years, piezoelectric ceramics has become a research hotspot. And widely used in aerospace, robotics, micro-control engineering and other fields. However, the hysteresis phenomenon of piezoelectric ceramic materials leads to the slow response speed and poor controllability of piezoelectric actuators, which seriously hinders the application and development of piezoelectric actuators. Therefore, how to eliminate hysteresis becomes a difficult problem to realize the precision displacement control of piezoelectric actuator. The common ideas for eliminating hysteresis nonlinearity can be summarized as modeling and control. Aiming at the phenomenon of rate-dependent hysteresis nonlinearity in piezoelectric ceramic actuators, a rate-dependent hysteresis nonlinear model is established in this paper. Because the traditional KP model belongs to the rate independent hysteretic nonlinear model, this paper improves on the classical KP model and constructs the Hammerstein model. The model can be used to describe the frequency dependent hysteresis nonlinearity in piezoelectric actuator. The model is composed of the classical KP model and the transfer function cascade to characterize the hysteresis nonlinearity, and the transfer function part is used to describe the dynamic rate correlation. Secondly, the parameter identification of KP model is carried out step by step, and the density function of KP model is identified by harmony search optimization algorithm and bat harmony sound hybrid optimization algorithm, and a less error identification algorithm is selected. Finally, in order to reduce or even eliminate the influence of rate-dependent hysteresis nonlinearity on displacement control accuracy, three control schemes are proposed in this paper: the first control scheme is feedforward control scheme with hysteresis inverse model compensation. The feedforward controller presented in this paper can effectively reduce the adverse effect of the rate dependent hysteresis nonlinearity on the displacement control accuracy. Although the open-loop control improves the tracking accuracy, the anti-jamming ability of the system is weak, so the second control scheme is proposed in this paper. The BP algorithm is used to adjust the PID parameters and the feedforward compound control scheme, which further improves the control accuracy. Moreover, it enhances the anti-interference ability of the system. Because compound control is still a model-based control method, modeling uncertainty will still weaken the control effect. The third scheme is a control scheme without inverse model. The main idea is to use two neural networks to approximate the two unknown variables in the function relationship of the control system, based on the super ability of the neural network to approximate the nonlinear function. In order to achieve the system output differential tracking system input ideal purpose. The experimental data show that the maximum error and root mean square error of neural network control are smaller than that of compound control. The experimental results show that the tracking accuracy of the neural network approximating nonlinear function control system is better than that of the piezoelectric ceramic actuator composite control system.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN384;TP273
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 孫麗;甘博;崔迪;;形狀記憶合金作為鋼框架混凝土墻結(jié)構(gòu)抗剪連接件性能研究[J];沈陽(yáng)建筑大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年03期
2 王揚(yáng)威;于凱;王振龍;;形狀記憶合金絲驅(qū)動(dòng)仿生波動(dòng)鰭推進(jìn)器設(shè)計(jì)與實(shí)驗(yàn)研究[J];中國(guó)機(jī)械工程;2015年08期
3 郭詠新;張臻;毛劍琴;周克敏;;超磁致伸縮作動(dòng)器的率相關(guān)Hammerstein模型與H_∞魯棒跟蹤控制[J];自動(dòng)化學(xué)報(bào);2014年02期
4 董曉蓉;左孝青;鐘子龍;謝香云;;醫(yī)用多孔Ni-Ti形狀記憶合金的制備和性能研究進(jìn)展[J];材料導(dǎo)報(bào);2014年03期
5 陳云;呂西林;蔣歡軍;;新型耗能增強(qiáng)型形狀記憶合金阻尼器減震性能研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
6 李朋志;葛川;蘇志德;閆豐;隋永新;楊懷江;;基于動(dòng)態(tài)模糊系統(tǒng)模型的壓電陶瓷驅(qū)動(dòng)器控制[J];光學(xué)精密工程;2013年02期
7 賴(lài)志林;劉向東;耿潔;;壓電陶瓷執(zhí)行器的類(lèi)Hammerstein模型及其參數(shù)辨識(shí)[J];光學(xué)精密工程;2012年09期
8 陳輝;譚永紅;周杏鵬;張亞紅;董瑞麗;;壓電陶瓷執(zhí)行器的動(dòng)態(tài)模型辨識(shí)與控制[J];光學(xué)精密工程;2012年01期
9 賴(lài)志林;劉向東;耿潔;李黎;;壓電陶瓷執(zhí)行器遲滯的滑模逆補(bǔ)償控制[J];光學(xué)精密工程;2011年06期
10 裴先茹;高海榮;;壓電材料的研究和應(yīng)用現(xiàn)狀[J];安徽化工;2010年03期
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 李康;壓電陶瓷驅(qū)動(dòng)器的遲滯非線性建模與控制[D];山東大學(xué);2014年
,本文編號(hào):2181302
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2181302.html