天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

基于改進Adaboost算法的視頻車輛輪廓檢測算法研究

發(fā)布時間:2018-06-18 07:27

  本文選題:視頻車輛輪廓 + adaboost算法; 參考:《中原工學(xué)院》2017年碩士論文


【摘要】:視頻車輛輪廓檢測技術(shù)作為智能交通中的關(guān)鍵技術(shù),在日常生活中有著廣泛的應(yīng)用前景。而智能交通對于視頻車輛輪廓檢測技術(shù)也有著實時性和準(zhǔn)確性等嚴(yán)苛的要求。而在檢測時,視頻圖像中復(fù)雜的背景以及各式各樣的干擾,是目前視頻車輛輪廓檢測技術(shù)面臨的問題。而隨著國內(nèi)外學(xué)者的不斷努力,各式各樣的檢測算法層出不窮。Adaboost算法是近些年來比較流行的機器學(xué)習(xí)算法,在人臉識別領(lǐng)域有著出色的表現(xiàn)。同樣,adaboost算法可以應(yīng)用于視頻車輛輪廓檢測領(lǐng)域。本文根據(jù)經(jīng)典的adaboost算法,在其基礎(chǔ)上做出了一些改進,研究工作如下:(1)介紹視頻車輛輪廓檢測技術(shù)研究的背景意義,了解其中面臨的問題。(2)介紹分析幾種現(xiàn)有的視頻車輛輪廓檢測算法,了解其原理,并總結(jié)出存在的問題。(3)詳細了解adaboost算法,理解其原理和實現(xiàn)過程,依次介紹haar特征、積分圖以及分類器的訓(xùn)練及選取過程。(4)提出一種改進的adaboost算法進行視頻車輛輪廓檢測。首先,針對算法學(xué)習(xí)過程中,haar特征計算量過于龐大且耗時的現(xiàn)象,提出了對訓(xùn)練樣本進行裁剪,去除樣本邊緣像素,有效減少特征數(shù)量,從而降低了計算量。(5)Adaboost算法檢測在對視頻圖像進行檢測時,滑動子窗口會在待檢圖像上依次滑過,圖像中無關(guān)信息都需要被檢測一遍,相當(dāng)耗時。提出了使用光流法來獲取視頻圖像中的運動區(qū)域作為感興趣區(qū)域,在感興趣區(qū)域中使用canny算子進行邊緣檢測,通過邊緣能量篩選感興趣區(qū)域,排除非感興趣區(qū)域。最終使用adaboost算法對感興趣區(qū)域進行檢測,減小了檢測區(qū)域降低了檢測時間。(6)通過設(shè)置閾值來對檢測結(jié)果進行篩選,提升準(zhǔn)確率。結(jié)合算法的優(yōu)點和不足對未來的發(fā)展進行展望。
[Abstract]:As the key technology of intelligent transportation, video vehicle contour detection technology has a wide application prospect in daily life. Intelligent Transportation has strict requirements such as real-time and accuracy for video vehicle contour detection technology. In detection, the complex background and various kinds of interference in video images are the current problems of video vehicle contour detection technology. With the continuous efforts of scholars at home and abroad, a variety of detection algorithm. Adaboost algorithm is a popular machine learning algorithm in recent years, and has a good performance in the field of face recognition. The adaboost algorithm can also be used in the field of video vehicle contour detection. Based on the classical adaboost algorithm, some improvements are made in this paper. The research work is as follows: 1) the background significance of the video vehicle contour detection technology is introduced. (2) introduce and analyze several existing video vehicle contour detection algorithms, understand their principles, and summarize the existing problems. (3) understand the adaboost algorithm in detail, understand its principle and implementation process, and then introduce the characteristics of haar in turn. An improved adaboost algorithm is proposed for video vehicle contour detection. First of all, aiming at the phenomenon that the computation of haar feature is too large and time-consuming in the learning process of the algorithm, the training sample is clipped to remove the edge pixels of the sample, and the number of features is reduced effectively. Therefore, the computational complexity of the algorithm is reduced. When detecting the video image, the sliding subwindow will slip through the image to be checked, and the irrelevant information in the image needs to be detected once, which is time-consuming. In this paper, an optical flow method is proposed to obtain the moving region of the video image as the region of interest, and the canny operator is used to detect the edge of the region of interest. The region of interest is filtered by edge energy, and the region of non-interest is excluded. Finally, the adaboost algorithm is used to detect the region of interest, which reduces the detection time and reduces the detection time. Combining the advantages and disadvantages of the algorithm, the future development is prospected.
【學(xué)位授予單位】:中原工學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U495;TP391.41

【參考文獻】

相關(guān)期刊論文 前10條

1 劉榮;金國偉;;基于背景差分和光流法的運動目標(biāo)檢測與跟蹤[J];現(xiàn)代制造技術(shù)與裝備;2015年02期

2 張利平;趙俊梅;;基于光流的運動車輛檢測和跟蹤技術(shù)的研究[J];車輛與動力技術(shù);2014年02期

3 王相海;秦鉅鰲;方玲玲;;基于感興趣區(qū)域AdaBoost分類器的視頻車輛檢測研究[J];遼寧師范大學(xué)學(xué)報(自然科學(xué)版);2014年01期

4 屈晶晶;辛云宏;;連續(xù)幀間差分與背景差分相融合的運動目標(biāo)檢測方法[J];光子學(xué)報;2014年07期

5 劉洋;王海暉;向云露;盧培磊;;基于改進的Adaboost算法和幀差法的車輛檢測方法[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2013年S1期

6 孟子博;姜虹;陳婧;袁波;王立強;;基于特征剪裁的AdaBoost算法及在人臉檢測中的應(yīng)用[J];浙江大學(xué)學(xué)報(工學(xué)版);2013年05期

7 袁國武;陳志強;龔健;徐丹;廖仁健;何俊遠;;一種結(jié)合光流法與三幀差分法的運動目標(biāo)檢測算法[J];小型微型計算機系統(tǒng);2013年03期

8 曹瑩;苗啟廣;劉家辰;高琳;;AdaBoost算法研究進展與展望[J];自動化學(xué)報;2013年06期

9 李宗陽;熊顯名;;基于背景差分和均值漂移的闖紅燈車輛視頻自動檢測系統(tǒng)[J];計算機應(yīng)用與軟件;2012年10期

10 婁路;;基于概率算法自適應(yīng)更新背景的運動車輛檢測[J];計算機工程與應(yīng)用;2012年25期



本文編號:2034679

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2034679.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f3585***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com