串聯(lián)機(jī)器人實(shí)時(shí)雙目視覺(jué)定位及跟蹤技術(shù)研究
本文選題:雙目視覺(jué) + 視覺(jué)伺服; 參考:《湖北工業(yè)大學(xué)》2017年碩士論文
【摘要】:基于雙目視覺(jué)的串聯(lián)機(jī)器人視覺(jué)伺服系統(tǒng)能夠直接獲取目標(biāo)的位置信息和更多的圖像特征,實(shí)現(xiàn)了基于視覺(jué)的閉環(huán)控制,是視覺(jué)伺服的典型結(jié)構(gòu)。本文圍繞著實(shí)時(shí)性、穩(wěn)定性、準(zhǔn)確性將課題分為目標(biāo)在圖像中的定位、目標(biāo)在三維中的定位、視覺(jué)伺服控制方法、目標(biāo)位置預(yù)測(cè)和跟蹤四個(gè)部分分析,分別研究其涉及的基本理論和方法,并通過(guò)仿真或理論評(píng)估這些方法對(duì)課題的適用性,探究串聯(lián)機(jī)器人實(shí)時(shí)雙目視覺(jué)伺服穩(wěn)定有效的實(shí)現(xiàn)方法。(1)使用目標(biāo)在圖像上的點(diǎn)特征定位目標(biāo),并通過(guò)對(duì)常用點(diǎn)特征提取算法原理和特點(diǎn)的對(duì)比,了解到Ransac優(yōu)化Orb算法具有強(qiáng)實(shí)時(shí)性和穩(wěn)定性。(2)分析了雙目下的目標(biāo)由圖像空間到三維空間的映射過(guò)程,發(fā)現(xiàn)視差的準(zhǔn)確性影響著三維定位的準(zhǔn)確性。引出了比傳統(tǒng)立體匹配算法更優(yōu)的ELAS立體匹配算法,并針對(duì)該算法誤匹配率較高的問(wèn)題,提出了基于視差連續(xù)性約束的改進(jìn)ELAS立體匹配算法,至少降低了原算法15.63%的誤匹配率。(3)基于eye-in-hand配置的6自由度串聯(lián)機(jī)器人和靜止的點(diǎn)目標(biāo),對(duì)比了PBVS、IBVS、HBVS的視覺(jué)伺服方法。針對(duì)現(xiàn)有IBVS中偽逆構(gòu)造法的缺點(diǎn),提出了基于混合的雅可比偽逆構(gòu)造法,仿真驗(yàn)證了新構(gòu)造法的有效性。(4)針對(duì)運(yùn)動(dòng)目標(biāo)軌跡預(yù)測(cè)的問(wèn)題,討論了已知目標(biāo)運(yùn)動(dòng)狀態(tài)下的線性kalman濾波、已知目標(biāo)運(yùn)動(dòng)狀態(tài)下多傳感融合的擴(kuò)展kalman濾波以及未知目標(biāo)運(yùn)動(dòng)狀態(tài)下的交互多模型的kalman濾波對(duì)目標(biāo)的跟蹤預(yù)測(cè),并仿真驗(yàn)證了這些方法在圖像和三維跟蹤過(guò)程中的有效性。在實(shí)驗(yàn)中,跟蹤平穩(wěn)誤差均小于5個(gè)像素或5mm。最終獲得了串聯(lián)機(jī)器人實(shí)時(shí)雙目視覺(jué)伺服穩(wěn)定有效的實(shí)現(xiàn)方法,即使用Ransac-Orb提取目標(biāo)點(diǎn)特征,使用改進(jìn)的ELAS求取視差,使用基于基于混合的雅可比偽逆構(gòu)造法的IBVS作為視覺(jué)伺服控制律,使用對(duì)應(yīng)場(chǎng)景下的kalman濾波對(duì)運(yùn)動(dòng)目標(biāo)進(jìn)行軌跡預(yù)測(cè)。
[Abstract]:The visual servo system of series robot based on binocular vision can directly obtain the position information of the target and more image features. It realizes the closed-loop control based on vision and is a typical structure of visual servo. This thesis is divided into four parts: target location in image, target positioning in 3D, visual servo control method, target position prediction and tracking, around real-time, stability and accuracy. The basic theories and methods involved are studied, and the applicability of these methods to the subject is evaluated by simulation or theory. This paper probes into the stable and effective realization method of real-time binocular visual servo of serial robot. It uses the point feature of the target to locate the target on the image, and compares the principle and characteristics of the common point feature extraction algorithm. It is found that the Ransac optimized Orb algorithm has strong real-time and stability. (2) the mapping process from image space to 3D space is analyzed. It is found that the accuracy of parallax affects the accuracy of 3D location. The ELAS stereo matching algorithm is better than the traditional stereo matching algorithm. Aiming at the problem of high mismatch rate, an improved ELAS stereo matching algorithm based on parallax continuity constraint is proposed. At least the mismatch rate of the original algorithm is reduced by 15.63%.) based on the eye-in-hand configuration, the 6-DOF series robot and the stationary point target are compared. The visual servo method of the PBVS IBVS / HBVS is compared. In view of the shortcomings of the existing pseudo inverse construction method in IBVS, a mixed Jacobian pseudo inverse construction method is proposed. The simulation results show that the new construction method is effective to predict the trajectory of moving targets. In this paper, the linear kalman filter with known target motion, the extended kalman filter with multi-sensor fusion and the target tracking prediction with interactive multi-model kalman filter under unknown moving state are discussed. Simulation results show that these methods are effective in image and 3D tracking. In the experiment, the tracking stationary error is less than 5 pixels or 5 mm. Finally, a stable and effective realization method of real-time binocular visual servo of serial robot is obtained, that is, the feature of target point is extracted by Ransac-Orb, and parallax is obtained by using improved ELAS. The IBVS based on the mixed Jacobian pseudo-inverse method is used as the visual servo control law, and the kalman filter in the corresponding scene is used to predict the trajectory of the moving target.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張璐;郭奇青;;采摘機(jī)器人選擇性作業(yè)信息獲取研究——基于無(wú)標(biāo)定視覺(jué)伺服系統(tǒng)[J];農(nóng)機(jī)化研究;2017年05期
2 鄒焱飚;王研博;周衛(wèi)林;;焊縫跟蹤應(yīng)用的線激光視覺(jué)伺服控制系統(tǒng)[J];光學(xué)精密工程;2016年11期
3 張子洋;孫作雷;曾連蓀;;視覺(jué)追蹤機(jī)器人系統(tǒng)構(gòu)建研究[J];電子技術(shù)應(yīng)用;2016年10期
4 王勇;劉治;;未標(biāo)定視覺(jué)的雙臂自適應(yīng)控制[J];計(jì)算機(jī)仿真;2016年10期
5 王新梅;魏武;劉瑋;劉峰;袁銀龍;;魯棒卡爾曼濾波下的圖像雅可比矩陣帶時(shí)延補(bǔ)償?shù)墓烙?jì)[J];控制理論與應(yīng)用;2015年08期
6 唐永鶴;盧煥章;侯文杰;;基于DOG特征點(diǎn)的序列圖像匹配算法[J];現(xiàn)代電子技術(shù);2008年04期
7 段彥婷;蔡陳生;王鵬飛;王寧;陳平;;機(jī)器人視覺(jué)伺服技術(shù)發(fā)展概況綜述[J];伺服控制;2007年06期
相關(guān)博士學(xué)位論文 前2條
1 邵澤明;視覺(jué)移動(dòng)機(jī)器人自主導(dǎo)航關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2009年
2 王社陽(yáng);機(jī)器人視覺(jué)伺服系統(tǒng)的若干問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 劉銘;基于ORB算法的雙目視覺(jué)測(cè)量與跟蹤研究[D];哈爾濱工業(yè)大學(xué);2014年
2 張作楠;機(jī)器人視覺(jué)伺服跟蹤系統(tǒng)的研究[D];江南大學(xué);2012年
3 田凱;基于單目視覺(jué)的視覺(jué)伺服與位姿估計(jì)[D];華中科技大學(xué);2009年
,本文編號(hào):1944954
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1944954.html