多運動模式仿蠕蟲氣動柔性機器人關(guān)鍵技術(shù)研究
本文選題:柔性機器人 + 柔性驅(qū)動器 ; 參考:《南京理工大學(xué)》2017年碩士論文
【摘要】:傳統(tǒng)的機器人一般由各種剛性結(jié)構(gòu)件通過運動副連接構(gòu)成,由于剛性結(jié)構(gòu)的本體對環(huán)境的適應(yīng)能力差,機器人很難在地形復(fù)雜的情況下工作。而柔性機器人由于采用可承受大應(yīng)變的柔軟材料制造,具有無限多的自由度和較強的變形能力,能夠適應(yīng)各種不規(guī)則的復(fù)雜環(huán)境,因此,在偵察、探測、救援及醫(yī)療等領(lǐng)域均有著廣闊的應(yīng)用前景。針對現(xiàn)有柔性機器人存在運動形式單一、變形利用率不高、結(jié)構(gòu)復(fù)雜等問題,本文提出并研究了一種多運動模式的仿蠕蟲氣動柔性機器人。該機器人采用壓縮空氣驅(qū)動,結(jié)構(gòu)簡單緊湊,運動靈活,不僅可以實現(xiàn)直線爬行前進,還可以進行轉(zhuǎn)彎、掉頭等運動。本文完成的主要研究工作包括:(1)通過分析蠕蟲生物的運動機理,模仿蚯蚓的蠕動爬行,研究設(shè)計了氣動仿蠕蟲柔性機器人的運動步態(tài)及總體結(jié)構(gòu)。(2)對柔性驅(qū)動器的結(jié)構(gòu)模型進行合理的簡化,利用有限元分析軟件研究了驅(qū)動器的截面形狀、硅橡膠材料的硬度、驅(qū)動器氣腔的壁厚以及纖維環(huán)尺寸的大小對驅(qū)動器軸向伸長變形能力的影響。通過優(yōu)化設(shè)計參數(shù),使柔性驅(qū)動器在較低的氣壓下,具有較大的軸向伸長變形能力。(3)設(shè)計制作了仿蠕蟲氣動柔性機器人實物樣機,并對蠕蟲機器人的關(guān)鍵部分-柔性驅(qū)動器進行了伸長與彎曲變形試驗研究。將試驗結(jié)果與仿真結(jié)果進行對比,結(jié)果表明:在相同的條件下,實驗結(jié)果與仿真模型結(jié)果基本吻合。對柔性驅(qū)動器的變形響應(yīng)特性進行了試驗研究,試驗結(jié)果表明:在有效的變形范圍內(nèi),驅(qū)動器充氣與排氣響應(yīng)時間變化趨勢相同;相同的壓力驅(qū)動下,驅(qū)動器充氣變形響應(yīng)時間比排氣變形響應(yīng)時間要長。(4)研究設(shè)計了蠕蟲機器人的樣機控制系統(tǒng),實現(xiàn)了對蠕蟲機器人運動的實時控制。根據(jù)樣機的運動步態(tài),建立了蠕蟲機器人的運動速度模型。將蠕蟲機器人樣機在不同的條件下進行了直行、轉(zhuǎn)彎及爬坡等各項運動性能的試驗測試。試驗結(jié)果表明:當(dāng)纖毛爬行足的角度為70°,蠕蟲機器人爬行在橡膠板上時,其運動速度最快,約為7.75mm/s。蠕蟲機器人在光滑的桌面上,一個轉(zhuǎn)彎運動周期可以轉(zhuǎn)過20°。蠕蟲機器人在橡膠板上最大爬坡角度達到了 30°。
[Abstract]:The traditional robot is usually made up of a variety of rigid structures connected by moving pairs. Due to the poor adaptability of the rigid structure body to the environment, it is difficult for the robot to work in the complex terrain. Because flexible robots are made of flexible materials that can withstand large strain, have infinite degrees of freedom and strong deformation ability, they can adapt to various irregular and complex environments, so they are detecting and detecting. Rescue and medical treatment and other fields have a broad application prospects. In order to solve the problems of single motion form, low efficiency of deformation utilization and complex structure of the existing flexible robot, this paper presents and studies a multi-mode worm simulating pneumatic flexible robot. The robot is driven by compressed air, with simple and compact structure and flexible motion. It can not only realize straight line crawling forward, but also make turn, turn around and so on. The main research work done in this paper includes: 1) by analyzing the motion mechanism of worm, we imitate the creep of earthworm. The kinematic gait and overall structure of pneumatic worm flexible robot are designed to simplify the structure model of flexible actuator reasonably. The cross section shape of actuator and the hardness of silicone rubber material are studied by using finite element analysis software. The influence of the wall thickness of the gas chamber and the size of the fiber ring on the axial elongation and deformation of the actuator. By optimizing the design parameters, the flexible actuator has a large axial elongation and deformation ability under low pressure. The elongation and bending deformation of flexible actuator, the key part of worm robot, are studied. The experimental results are compared with the simulation results. The results show that the experimental results are in good agreement with the simulation results under the same conditions. The deformation response characteristics of the flexible actuator are studied experimentally. The experimental results show that in the effective deformation range, the change trend of the aeration and exhaust response time of the actuator is the same, and that of the same pressure drive, The response time of inflatable deformation of actuator is longer than that of exhaust. 4) the prototype control system of worm robot is designed and the real time control of worm robot is realized. According to the motional gait of the prototype, the speed model of worm robot is established. The worm robot prototype was tested under different conditions, such as direct running, turning and climbing. The experimental results show that when the angle of ciliated crawling foot is 70 擄and the worm robot crawls on the rubber plate, its speed is the fastest, about 7.75 mm / s. A worm robot on a smooth desktop can turn around 20 擄in a turning cycle. The maximum climbing angle of worm robot on rubber plate is 30 擄.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關(guān)期刊論文 前10條
1 王緒;費燕瓊;許紅偉;朱宇航;;仿尺蠖蠕動模塊化軟體機器人的設(shè)計[J];高技術(shù)通訊;2015年Z1期
2 何斌;王志鵬;唐海峰;;軟體機器人研究綜述[J];同濟大學(xué)學(xué)報(自然科學(xué)版);2014年10期
3 劉磊;李娟;李偉達;秦佳;;諧振式微型管道機器人設(shè)計與實驗[J];哈爾濱工程大學(xué)學(xué)報;2014年08期
4 費燕瓊;呂海洋;沈星堯;;模塊化軟體機器人運動模式[J];上海交通大學(xué)學(xué)報;2013年12期
5 譚民;王碩;;機器人技術(shù)研究進展[J];自動化學(xué)報;2013年07期
6 徐揚生;閻鏡予;;機器人技術(shù)的新進展[J];集成技術(shù);2012年01期
7 郁樹梅;王明輝;馬書根;李斌;王越超;;水陸兩棲蛇形機器人的研制及其陸地和水下步態(tài)[J];機械工程學(xué)報;2012年09期
8 曹玉君;尚建忠;梁科山;范大鵬;馬東璽;唐力;;軟體機器人研究現(xiàn)狀綜述[J];機械工程學(xué)報;2012年03期
9 黃永安;熊蔡華;熊有倫;;智能機器人與應(yīng)用的現(xiàn)狀與發(fā)展趨勢[J];國際學(xué)術(shù)動態(tài);2009年04期
10 趙光明;宋順成;孟祥瑞;;基于Yeoh本構(gòu)關(guān)系橡膠超彈性材料的無網(wǎng)格法分析[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報;2009年01期
,本文編號:1928151
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1928151.html