基于幾何約束的種子取樣機器人示教及自標定方法研究
發(fā)布時間:2018-05-07 22:20
本文選題:種子切削 + 幾何約束。 參考:《中國科學技術大學》2017年碩士論文
【摘要】:操作對象的自動定位和機器人示教是機器人應用基礎研究中的關鍵問題,對此開展研究工作具有重要的應用價值和理論意義。本文在中科院先導課題支持下,針對種子取樣過程中操作對象的自動定位和機器人示教問題,設計并實現(xiàn)了種子切削取樣機器人系統(tǒng),解決了種子取樣過程的自定位和示教問題,并通過實驗證明了所提方法的正確性。論文的主要工作如下:1.依據(jù)種子切削取樣課題任務的要求,結(jié)合國內(nèi)外育種專家對種子取樣自動化裝備的需求,設計并實現(xiàn)了一種作物種子切削取樣機器人系統(tǒng),編寫了上位機程序,解決了取樣過程的自定位和直接示教問題。2.針對種子切削取樣機器人系統(tǒng)中取樣操作的自定位問題,分析了種子取樣盒的幾何結(jié)構(gòu)特點,提出了基于幾何約束的機器人自標定方法。該自標定方法基于種子取樣盒坐標點的幾何約束關系,利用取樣盒坐標系與機器人基坐標系的齊次坐標變換方法,解決了取樣操作中的自定位問題,實現(xiàn)了取樣點坐標位置的自動獲取。3.為了實現(xiàn)取樣過程中機器人直接示教功能,研究了機器人直接示教問題,采用基于位置調(diào)整的主動柔順控制方法,在ER6C60上開發(fā)了一種基于拖曳的機器人直接示教系統(tǒng)。該直接示教系統(tǒng)采用了基于力傳感器的主動柔順控制算法,利用多維力傳感器獲得外部的示教力/力矩信息,將經(jīng)力坐標變換后的力信號矢量轉(zhuǎn)換為機器人的位置調(diào)整量,達到了順應性控制的目的。上位機采用基于MFC對話框程序,從而實現(xiàn)了機器人的直接牽引示教功能。4.實驗表明,基于幾何約束的自標定方法計算的種子坐標位置與實際位置坐標誤差小于0.8 mm,滿足課題需求。此方法測量過程簡單,成本低,定位精度高,對解決工件坐標的自定位問題具有借鑒意義;谖恢每刂撇呗缘闹苯邮窘谭椒ㄊ沟脵C器人很好地跟蹤示教作用力,直接示教系統(tǒng)的可靠性得到了實驗的驗證。該示教方法適用于封閉的機器人控制系統(tǒng),通用性較好。
[Abstract]:The automatic location of operating objects and the demonstration of robot teaching are the key problems in the basic research of robot application. It has important application value and theoretical significance to carry out the research work. In this paper, a seed cutting sampling robot system is designed and implemented under the support of the pilot project of the Chinese Academy of Sciences, aiming at the problem of automatic positioning of the operation object and robot teaching during the seed sampling process. The problem of self-localization and teaching in seed sampling process is solved, and the correctness of the proposed method is proved by experiments. The main work of the thesis is as follows: 1: 1. According to the requirements of seed cutting sampling task and the requirement of breeding experts at home and abroad for seed sampling automation equipment, a crop seed cutting sampling robot system is designed and implemented, and the upper computer program is compiled. The problem of self location and direct teaching in the sampling process is solved. In order to solve the problem of self-localization of sampling operation in seed cutting sampling robot system, the geometric structure of seed sampling box is analyzed, and a self-calibration method based on geometric constraints is proposed. The self-calibration method is based on the geometric constraint relation of the coordinate points of the seed sampling box. By using the homogeneous coordinate transformation method between the sampling box coordinate system and the robot basic coordinate system, the self-positioning problem in the sampling operation is solved. The automatic acquisition of coordinate position of sampling point. 3. In order to realize the direct teaching function of robot in the sampling process, the direct teaching problem of robot is studied. An active compliance control method based on position adjustment is adopted to develop a robot direct teaching system based on towing on ER6C60. The direct teaching system adopts the active compliance control algorithm based on the force sensor. The multi-dimension force sensor is used to obtain the external teaching force / torque information, and the force signal vector after the force coordinate transformation is converted into the position adjustment quantity of the robot. The purpose of compliance control is achieved. The upper computer adopts the program based on MFC dialog box, thus realizing the robot's direct traction teaching function. 4. The experimental results show that the error between the seed coordinate and the actual position calculated by the self-calibration method based on geometric constraints is less than 0.8 mm, which meets the requirements of the project. This method is simple in measurement, low in cost and high in positioning accuracy. It is useful for solving the problem of self-localization of workpiece coordinates. The direct teaching method based on the position control strategy makes the robot track the teaching force well, and the reliability of the direct teaching system is verified by experiments. This teaching method is suitable for closed robot control system and has good generality.
【學位授予單位】:中國科學技術大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關期刊論文 前10條
1 張永強;單宇;高延雷;張澤浩;;糧食安全背景下我國種子產(chǎn)業(yè)發(fā)展現(xiàn)狀研究[J];農(nóng)業(yè)經(jīng)濟;2016年06期
2 張含陽;;人機協(xié)作:下一代機器人的必然屬性[J];機器人產(chǎn)業(yè);2016年03期
3 劉昆;陳慶盈;李世中;;基于力/力矩傳感器的直接示教系統(tǒng)研究[J];自動化與儀表;2016年05期
4 李廣偉;谷侃鋒;趙明揚;;育種用玉米種子切片取樣自動定向方法與試驗[J];農(nóng)業(yè)工程學報;2016年04期
5 王儒敬;孫丙宇;;農(nóng)業(yè)機器人的發(fā)展現(xiàn)狀及展望[J];中國科學院院刊;2015年06期
6 李明;;分子模塊設計育種引領未來育種科技新方向—中國科學院戰(zhàn)略性先導科技專項“分子模塊設計育種創(chuàng)新體系”簡介[J];中國科學:生命科學;2015年06期
7 薛勇彪;種康;韓斌;桂建芳;王臺;傅向東;何祖華;儲成才;田志喜;程祝寬;林少揚;;開啟中國設計育種新篇章——“分子模塊設計育種創(chuàng)新體系”戰(zhàn)略性先導科技專項進展[J];中國科學院院刊;2015年03期
8 徐建明;丁毅;禹鑫q,
本文編號:1858710
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1858710.html
最近更新
教材專著