混合模糊語義細胞的學習及其應(yīng)用
發(fā)布時間:2018-04-29 02:44
本文選題:概念 + 模糊語義細胞 ; 參考:《浙江大學》2017年碩士論文
【摘要】:概念實體的表達往往具有一定的模糊性,這種模糊性是蘊含在在語義中出現(xiàn)的。使用合適的概念模型來表達模糊語義具有重要的意義。模糊語義細胞作為最小的模糊概念的表示單元,在數(shù)據(jù)挖掘、機器學習以及知識發(fā)現(xiàn)中具有重要的作用。在概念空間(論域)Ω上,模糊語義細胞L =P,d,δ被稱為"關(guān)于pi","類似Pi"以及"和Pi接近"的語義標簽,其中P代表概念i的原型,d是定義在論域Ω上的距離函數(shù),δ則是概念空間中定義在[0,+∞)上其他點和Pi的距離的概率密度函數(shù)。在模糊語義細胞的學習中我們需要關(guān)注語義的覆蓋程度、描述的清晰程度以及描述的模糊性這三個因素,因此模糊語義細胞的學習原則很自然地就聯(lián)系到最大覆蓋率、最具典型性和最大模糊熵這三個指標之上。本文中混合模糊語義細胞是建立在模糊語義細胞的學習基礎(chǔ)之上,模糊語義細胞學習的最終目標是要尋找最佳的L來刻畫具有某個概念的數(shù)據(jù)集,而混合模糊語義細胞則在此基礎(chǔ)上做了更深一層的拓展,考慮具有若干個相關(guān)的概念的集合LA={L1,L2,...,Ln},其中每個概念都對應(yīng)使用模糊語義細胞Li來描述第i個概念的數(shù)據(jù)集,混合模糊語義細胞的學習是為了能夠?qū)ふ业揭唤M最合適的權(quán)重參數(shù)W={W1,w2,...w2}來刻畫某個概念在此概念集合(主題)中的影響程度或者是重要程度,借鑒之前的模糊語義細胞的學習原則,我們需要重新定義并計算語義細胞的兩個數(shù)字特征:期望粒度R和模糊熵H。最終將學習混合模糊語義細胞的問題轉(zhuǎn)化為了非線性約束優(yōu)化問題。
[Abstract]:The expression of conceptual entities often has some fuzziness, which is contained in semantics. It is of great significance to express fuzzy semantics with appropriate conceptual models. As the smallest representation unit of fuzzy concepts, fuzzy semantic cells play an important role in data mining, machine learning and knowledge discovery. On the concept space (domain) 惟, the fuzzy semantic cell L Pu D, 未 is called the semantic label "on pi", "similar to Pi" and "close to Pi". Where P represents the prototype of the concept I / d is the distance function defined on the domain 惟, and 未 is the probability density function of the distance between other points and Pi defined on [0, 鈭瀅 in the concept space. In the learning of fuzzy semantic cells, we need to pay attention to the three factors of semantic coverage, clarity of description and fuzziness of description, so the learning principle of fuzzy semantic cells is naturally related to the maximum coverage. The most typical and the maximum fuzzy entropy above these three indicators. In this paper, mixed fuzzy semantic cells are based on the learning of fuzzy semantic cells. The ultimate goal of fuzzy semantic cell learning is to find the best L to depict the data set with a certain concept. On the other hand, the mixed fuzzy semantic cells are further extended to consider the set of several related concepts LA= {L1 / L2U. N}, in which each concept corresponds to the data set in which the fuzzy semantic cell Li is used to describe the first concept. The learning of mixed fuzzy semantic cells is to be able to find the most appropriate set of weight parameters W = {W1W2U. W2} to describe the degree of influence or importance of a concept in this set of concepts (themes). Based on the learning principle of fuzzy semantic cells, we need to redefine and calculate the two numerical features of semantic cells: expected granularity R and fuzzy entropy H. Finally, the problem of learning mixed fuzzy semantic cells is transformed into nonlinear constrained optimization problem.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.1
【參考文獻】
相關(guān)期刊論文 前3條
1 邢清華;劉付顯;;直覺模糊集隸屬度與非隸屬度函數(shù)的確定方法[J];控制與決策;2009年03期
2 王堅強;;模糊多準則決策方法研究綜述[J];控制與決策;2008年06期
3 雷英杰,趙曄,王濤,王堅,申曉勇;直覺模糊語義匹配的相似性度量[J];空軍工程大學學報(自然科學版);2005年02期
相關(guān)碩士學位論文 前1條
1 顏程yN;基于證據(jù)理論和語義細胞模型的多標簽音樂情感識別研究[D];浙江大學;2012年
,本文編號:1818065
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1818065.html
最近更新
教材專著