基于擾動(dòng)觀測(cè)與滑模理論的IEV直接橫擺力矩控制研究
本文選題:輪轂式電動(dòng)汽車(chē) + 有限時(shí)間控制; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:為了提高車(chē)輛在危險(xiǎn)工況下的行駛穩(wěn)定性,本文以輪轂式電動(dòng)汽車(chē)(IEV)為被控對(duì)象,基于滑模變結(jié)構(gòu)控制和非線(xiàn)性擾動(dòng)觀測(cè)理論,提出了一種切實(shí)可行的直接橫擺力矩控制策略。首先,本文對(duì)輪轂式電動(dòng)汽車(chē)進(jìn)行動(dòng)力學(xué)分析,并在此基礎(chǔ)上,考慮橫擺角速度和質(zhì)心側(cè)偏角對(duì)車(chē)輛橫擺運(yùn)動(dòng)的影響,同時(shí)利用二自由度車(chē)輛模型得到期望的橫擺角速度和質(zhì)心側(cè)偏角,最終確定了直接橫擺力矩控制策略。該控制策略主要由質(zhì)心側(cè)偏角觀測(cè)器、直接橫擺力矩控制器以及力矩分配控制器三部分組成:(1)基于線(xiàn)性二自由度車(chē)輛模型,應(yīng)用二階滑模觀測(cè)理論構(gòu)建狀態(tài)觀測(cè)器得到車(chē)輛質(zhì)心側(cè)偏角的估計(jì)值;(2)利用滑?刂评碚,設(shè)計(jì)了傳統(tǒng)滑模直接橫擺力矩控制器,其主要作用在于保證車(chē)輛橫擺角度和質(zhì)心側(cè)偏角的實(shí)際值在有限時(shí)間內(nèi)跟蹤上其期望值,并輸出車(chē)輛穩(wěn)定運(yùn)行所需的附加橫擺力矩;(3)采用動(dòng)態(tài)載荷分配方法,建立力矩分配器對(duì)附加橫擺力矩進(jìn)行分配,得到四個(gè)輪轂電機(jī)對(duì)相應(yīng)車(chē)輪施加的力矩大小。其次,針對(duì)傳統(tǒng)滑?刂浦写嬖诘亩墩瘳F(xiàn)象,提出了二階滑模控制方法。該方法是通過(guò)對(duì)滑模變量進(jìn)行二次求導(dǎo),從而得到控制輸入的導(dǎo)數(shù),再將控制輸入的導(dǎo)數(shù)看作虛擬輸入,同時(shí)根據(jù)二階滑?刂品椒▉(lái)設(shè)計(jì)控制率。這就意味著設(shè)計(jì)的虛擬控制器是不連續(xù)的,而實(shí)際的控制器作為虛擬控制器的積分是連續(xù)的,因此從根本上解決了傳統(tǒng)控制中的抖振問(wèn)題。接著為了避免二階滑?刂破髦锌刂圃鲆孢x取過(guò)大,本文結(jié)合非線(xiàn)性擾動(dòng)觀測(cè)和二階滑?刂萍夹g(shù),進(jìn)一步提出了一種復(fù)合的二階滑模直接橫擺力矩控制器。最后,通過(guò)CarSim建立整車(chē)模型,MATLAB/Simulink搭建直接橫擺力矩控制系統(tǒng),并將CarSim和MATLAB/Simulink進(jìn)行聯(lián)合仿真試驗(yàn)。本文主要針對(duì)有無(wú)側(cè)向風(fēng)擾動(dòng)兩種情況下,分別在低附著路面上對(duì)車(chē)輛進(jìn)行雙移線(xiàn)閉環(huán)仿真測(cè)試。仿真結(jié)果表明,本文提出的直接橫擺力矩控制策略能夠保證車(chē)輛的行駛穩(wěn)定性,同時(shí)對(duì)四種直接橫擺力矩控制器的控制效果進(jìn)行了比較分析后發(fā)現(xiàn),基于擾動(dòng)觀測(cè)的二階滑?刂破鞅憩F(xiàn)最佳,其不僅消除了傳統(tǒng)滑?刂破髦写嬖诘亩墩駟(wèn)題,而且具備更強(qiáng)的魯棒性和精確性。
[Abstract]:In order to improve the driving stability of vehicles under dangerous conditions, a practical direct yaw torque control strategy is proposed based on sliding mode variable structure control and nonlinear disturbance observation theory, taking the wheel hub electric vehicle (IEV) as the controlled object. First of all, the dynamic analysis of wheel hub type electric vehicle is carried out, and on this basis, the influence of yaw angular velocity and side deflection angle of mass center on vehicle yaw motion is considered. At the same time, the desired yaw velocity and the lateral deflection angle of the center of mass are obtained by using the two-degree-of-freedom vehicle model, and the direct yaw torque control strategy is finally determined. The control strategy is mainly composed of three parts: a mass center side angle observer, a direct yaw torque controller and a torque distribution controller. The control strategy is based on a linear two-degree-of-freedom vehicle model. The second order sliding mode observation theory is used to construct the state observer to get the estimated value of the side deflection angle of the vehicle's mass center. Using the sliding mode control theory, the traditional sliding mode direct yaw torque controller is designed. Its main function is to ensure that the actual value of the vehicle yaw angle and the side deflection angle of the center of mass track its expected value in a limited time, and to output the additional yaw torque required for the stable operation of the vehicle and adopt the dynamic load distribution method. The torque distributor was established to distribute the additional yaw torque and the torque applied by the four hub motors to the corresponding wheels was obtained. Secondly, the second order sliding mode control method is proposed to solve the chattering phenomenon in the traditional sliding mode control. In this method, the derivative of the control input is obtained by quadratic derivation of the sliding mode variable, then the derivative of the control input is regarded as the virtual input, and the control rate is designed according to the second-order sliding mode control method. This means that the designed virtual controller is discontinuous, and the actual controller as the integral of the virtual controller is continuous, so the buffeting problem in the traditional control is solved fundamentally. Then, in order to avoid the excessive selection of the control gain in the second-order sliding mode controller, a compound second-order sliding mode direct yaw torque controller is proposed by combining the nonlinear perturbation observation and the second-order sliding mode control technique. Finally, the whole vehicle model is established by CarSim, and the direct yaw torque control system is built by MATLAB / Simulink, and the CarSim and MATLAB/Simulink are combined to simulate the system. In this paper, the vehicle with or without lateral wind disturbance is simulated and tested on the low adhesion road. The simulation results show that the proposed direct yaw torque control strategy can guarantee the vehicle running stability. At the same time, the control effects of four kinds of direct yaw torque controllers are compared and analyzed. The second-order sliding mode controller based on perturbation observation performs best, which not only eliminates the buffeting problem in the traditional sliding mode controller, but also has stronger robustness and accuracy.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U469.72;TP273
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 毛亮亮;周凱;王旭東;;永磁同步電機(jī)變指數(shù)趨近律滑?刂芠J];電機(jī)與控制學(xué)報(bào);2016年04期
2 趙國(guó)榮;韓旭;胡正高;馬晨;孫聰;;基于模糊滑模方法的雙舵控制導(dǎo)彈制導(dǎo)控制一體化[J];控制與決策;2016年02期
3 陳慧;高博麟;徐帆;;車(chē)輛質(zhì)心側(cè)偏角估計(jì)綜述[J];機(jī)械工程學(xué)報(bào);2013年24期
4 張金柱;張洪田;孫遠(yuǎn)濤;;電動(dòng)汽車(chē)穩(wěn)定性的橫擺力矩控制[J];電機(jī)與控制學(xué)報(bào);2012年06期
5 楊養(yǎng)戶(hù);;電動(dòng)汽車(chē)輪轂電機(jī)技術(shù)[J];汽車(chē)維修;2012年03期
6 王偉達(dá);張為;丁能根;李宏才;;汽車(chē)DYC系統(tǒng)的二階滑?刂芠J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
7 熊璐;余卓平;姜煒;蔣造云;;基于縱向力分配的輪邊驅(qū)動(dòng)電動(dòng)汽車(chē)穩(wěn)定性控制[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
8 郭孔輝;付皓;丁海濤;;基于擴(kuò)展卡爾曼濾波的汽車(chē)質(zhì)心側(cè)偏角估計(jì)[J];汽車(chē)技術(shù);2009年04期
9 朱紹中;姜煒;余卓平;張立軍;;基于控制分配的輪轂電機(jī)驅(qū)動(dòng)電動(dòng)車(chē)穩(wěn)定性控制仿真研究[J];系統(tǒng)仿真學(xué)報(bào);2008年18期
10 余卓平;姜煒;張立軍;;四輪輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車(chē)扭矩分配控制[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年08期
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前4條
1 武冬梅;分布式驅(qū)動(dòng)電動(dòng)汽車(chē)動(dòng)力學(xué)控制機(jī)理和控制策略研究[D];吉林大學(xué);2015年
2 劉偉;基于質(zhì)心側(cè)偏角相平面的車(chē)輛穩(wěn)定性控制系統(tǒng)研究[D];吉林大學(xué);2013年
3 陳禹行;布式驅(qū)動(dòng)電動(dòng)汽車(chē)直接橫擺力矩控制研究[D];吉林大學(xué);2013年
4 李鵬;傳統(tǒng)和高階滑?刂蒲芯考捌鋺(yīng)用[D];國(guó)防科學(xué)技術(shù)大學(xué);2011年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 莫遠(yuǎn)秋;基于滑模觀測(cè)器的高速永磁同步電機(jī)無(wú)傳感器技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 汪杰;四輪轂電機(jī)驅(qū)動(dòng)車(chē)輛轉(zhuǎn)向穩(wěn)定性控制[D];北京理工大學(xué);2015年
3 楊康;汽車(chē)電子穩(wěn)定系統(tǒng)(ESP)控制策略的研究[D];燕山大學(xué);2014年
4 王勃;無(wú)傳感器感應(yīng)電機(jī)無(wú)抖振高階終端滑?刂频难芯縖D];哈爾濱工業(yè)大學(xué);2013年
5 劉艷昭;混合動(dòng)力車(chē)載電機(jī)直接轉(zhuǎn)矩控制算法試驗(yàn)研究[D];吉林大學(xué);2012年
6 何錚斌;轉(zhuǎn)向工況下四輪驅(qū)動(dòng)汽車(chē)扭矩分配控制研究[D];重慶大學(xué);2012年
7 徐明法;基于最優(yōu)滑?刂评碚摰能(chē)輛穩(wěn)定性控制策略研究[D];吉林大學(xué);2011年
8 楊峰;基于Excel Solver的常用穩(wěn)態(tài)輪胎模型參數(shù)辨識(shí)[D];吉林大學(xué);2011年
9 姚國(guó)成;汽車(chē)穩(wěn)定性控制策略的仿真研究[D];吉林大學(xué);2007年
10 李琳;滑模變結(jié)構(gòu)控制系統(tǒng)抖振抑制方法的研究[D];大連理工大學(xué);2006年
,本文編號(hào):1806941
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1806941.html