基于車路協(xié)同的區(qū)域交通信號控制技術(shù)研究
本文選題:車路協(xié)同 切入點:區(qū)域控制 出處:《北方工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著城市規(guī)模的不斷擴大,交通擁堵已經(jīng)成為大城市中普遍存在的問題,并且由此帶來了一系列的社會問題。為了解決日益嚴峻的交通擁堵問題,各國相繼提出了智能交通系統(tǒng)的概念。車路協(xié)同技術(shù)作為智能交通系統(tǒng)的前沿技術(shù),是解決城市道路擁堵的有效方法之一,得到了各國交通工作者的重點關(guān)注。車路協(xié)同系統(tǒng)基于無線通信和傳感器檢測等技術(shù)獲取車輛和道路的有效信息,通過建立車車通信、車路通信,將人、車、路三者有效的聯(lián)系起來,完成車輛和路旁基礎(chǔ)設(shè)施之間的交互,充分利用基礎(chǔ)設(shè)施和道路資源,提高道路的利用率,改善交通的安全,緩解交通擁堵現(xiàn)象。本文主要研究了智能交通系統(tǒng)中的區(qū)域交通控制,重點研究了車路協(xié)同環(huán)境下的區(qū)域交通信號控制。主要完成了以下幾個方面的工作:(1)首先,總結(jié)了區(qū)域交通信號控制的發(fā)展狀態(tài),著重研究了區(qū)域子區(qū)劃分的方法,提出了車路協(xié)同環(huán)境下基于狀態(tài)分析的控制小區(qū)劃分算法,以路網(wǎng)的行程時間為主要因素,結(jié)合交叉口之間的連通性,通過設(shè)定擁堵程度閾值,確定關(guān)鍵路口,并以此為核心進行子區(qū)劃分。(2)對車路協(xié)同環(huán)境下的區(qū)域控制進行了相關(guān)研究,提出了基于K均值聚類的區(qū)域交通信號控制策略,通過車路協(xié)同環(huán)境下的檢測技術(shù)獲取車輛的精確信息,計算出各個車輛到達路口所需的時間,利用K均值聚類分成兩大類,并以此來調(diào)整綠燈時間,同時檢測等待時間最長的相位作為下一個通行相位。(3)搭建了車路協(xié)同環(huán)境下的優(yōu)先信號控制平臺,利用手機等移動設(shè)備作為用戶端,同時利用百度地圖獲取車輛的位置,實時監(jiān)測車輛行駛方向和速度,通過調(diào)整最近鄰的交通信號,從而實現(xiàn)部分車輛的優(yōu)先運行,并在北京市長安街進行了實際項目驗證。
[Abstract]:With the continuous expansion of urban scale, traffic congestion has become a common problem in large cities, and has brought a series of social problems. The concept of intelligent transportation system has been put forward one after another. As the frontier technology of intelligent transportation system, vehicle-road coordination technology is one of the effective methods to solve urban road congestion. Based on wireless communication and sensor detection and other technologies to obtain effective information of vehicles and roads, through the establishment of vehicle-vehicle communications, vehicle-road communications, people, cars, The three roads are effectively linked to complete the interaction between vehicles and roadside infrastructure, make full use of infrastructure and road resources, improve road utilization, and improve traffic safety. In this paper, we mainly study the regional traffic control in intelligent transportation system, and focus on the regional traffic signal control under the environment of vehicle-road coordination. In this paper, the development of regional traffic signal control is summarized, the method of regional sub-area division is studied emphatically, and the algorithm of control cell partition based on state analysis is put forward in the collaborative environment of vehicle and road, with the travel time of road network as the main factor. According to the connectivity between intersections, the key intersection is determined by setting the threshold of traffic congestion, and the sub-area is divided as the core. (2) the regional control under the collaborative environment of vehicle and road is studied. A traffic signal control strategy based on K-means clustering is proposed in this paper. The accurate information of vehicles is obtained by the detection technology in the vehicle-road cooperative environment, and the time required for each vehicle to reach the intersection is calculated, and the K-means clustering is divided into two categories. In this way, the green time is adjusted, and the phase of the longest waiting time is detected as the next phase.) the priority signal control platform under the collaborative environment of vehicle and road is built, and mobile devices such as mobile phone are used as the client. At the same time, Baidu map is used to obtain the position of the vehicle, to monitor the direction and speed of the vehicle in real time, to realize the priority operation of some vehicles by adjusting the traffic signal of the nearest neighbor, and to carry out the actual project verification in Changan Street, Beijing.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491.54;TP273
【參考文獻】
相關(guān)期刊論文 前10條
1 姚佼;楊曉光;;車路協(xié)同環(huán)境下城市交通控制研究[J];上海理工大學(xué)學(xué)報;2013年04期
2 盧守峰;韋欽平;沈文;劉喜敏;;集成VISSIM、Excel VBA和MATLAB的仿真平臺研究[J];交通運輸系統(tǒng)工程與信息;2012年04期
3 王云鵬;;國內(nèi)外ITS系統(tǒng)發(fā)展的歷程和現(xiàn)狀[J];汽車零部件;2012年06期
4 王笑京;;轉(zhuǎn)變發(fā)展方式 自主發(fā)展中國智能交通系統(tǒng)[J];城市交通;2011年06期
5 王云鵬;易振國;夏海英;田大新;;基于流行病模型的車路協(xié)同預(yù)警信息交互方法[J];北京航空航天大學(xué)學(xué)報;2011年05期
6 徐麗群;;路網(wǎng)分區(qū)的樹生長算法[J];計算機應(yīng)用研究;2009年10期
7 盧凱;徐建閩;李軼舜;;基于關(guān)聯(lián)度分析的協(xié)調(diào)控制子區(qū)劃分方法[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2009年07期
8 孔祥杰;沈國江;梁同海;;具有公交優(yōu)先的路網(wǎng)交通流智能協(xié)調(diào)控制[J];浙江大學(xué)學(xué)報(工學(xué)版);2009年06期
9 張健沛;楊悅;楊靜;張澤寶;;基于最優(yōu)劃分的K-Means初始聚類中心選取算法[J];系統(tǒng)仿真學(xué)報;2009年09期
10 李瑞敏;陸化普;史其信;;交通信號控制子區(qū)模糊動態(tài)劃分方法研究[J];武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版);2008年03期
相關(guān)會議論文 前1條
1 王笑京;;智能交通與道路交通安全-發(fā)展動態(tài)及建議[A];2008第四屆中國智能交通年會論文集[C];2008年
相關(guān)碩士學(xué)位論文 前1條
1 于翔;聚類分析中k-均值方法的研究[D];哈爾濱工程大學(xué);2007年
,本文編號:1677288
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1677288.html