壓電陶瓷微定位平臺(tái)的遲滯非線性補(bǔ)償方法研究
本文關(guān)鍵詞: 壓電陶瓷微定位平臺(tái) 遲滯非線性 率相關(guān)特性 KP靜態(tài)模型 快速Terminal滑模控制 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:微納米定位技術(shù)被廣泛應(yīng)用于精密制造、生物醫(yī)學(xué)和微電子等領(lǐng)域,成為了現(xiàn)代高新科技中的關(guān)鍵技術(shù)。壓電陶瓷微定位平臺(tái)是實(shí)現(xiàn)這一技術(shù)的核心器件,但由于壓電陶瓷本身固有的遲滯非線性以及蠕變特性等,使得微定位平臺(tái)的控制精度降低,瞬間響應(yīng)速度變慢。本文以壓電陶瓷微定位平臺(tái)為研究對(duì)象,以消除或降低遲滯非線性對(duì)定位精度的影響為目標(biāo),分別對(duì)壓電陶瓷微定位平臺(tái)的遲滯非線性建模和補(bǔ)償方法進(jìn)行了研究。首先對(duì)壓電陶瓷微定位平臺(tái)的構(gòu)成進(jìn)行介紹,并結(jié)合壓電陶瓷微定位平臺(tái)的國(guó)內(nèi)外研究現(xiàn)狀,總結(jié)出遲滯非線性的建模及補(bǔ)償方法的研究成果。然后,為了實(shí)現(xiàn)對(duì)平臺(tái)遲滯非線性的描述,通過(guò)對(duì)各種遲滯非線性模型的優(yōu)缺點(diǎn)進(jìn)行比較和分析,本文最終選用KP靜態(tài)模型描述壓電陶瓷微定位平臺(tái)的遲滯非線性,并分別采用布谷鳥搜索算法、粒子群和布谷鳥混合優(yōu)化算法對(duì)KP靜態(tài)模型中的密度參數(shù)進(jìn)行辨識(shí),進(jìn)而得到高精確度的遲滯模型。由于壓電陶瓷微定位平臺(tái)不僅具有遲滯特性,還具有頻率特性,所以對(duì)其頻率特性進(jìn)行了分析,并在KP靜態(tài)模型的基礎(chǔ)上建立KP率相關(guān)模型。最后,通過(guò)仿真驗(yàn)證了所提模型的有效性,仿真結(jié)果表明,在相同迭代次數(shù)下,使用粒子群和布谷鳥混合優(yōu)化算法辨識(shí)得到的模型精度更高。為了降低和消除遲滯非線性對(duì)平臺(tái)控制精度的影響,本文提出了三種控制方案。第一種控制方案是遲滯逆模型補(bǔ)償?shù)那梆伩刂品桨。在建立精確度較高的KP靜態(tài)模型之后,采用遞推法建立KP靜態(tài)逆模型和KP率相關(guān)逆模型。并以建立的逆模型作為前饋控制器,對(duì)壓電陶瓷微定位平臺(tái)進(jìn)行開環(huán)控制實(shí)驗(yàn)。但是逆模型前饋控制屬于開環(huán)控制,無(wú)法消除建模誤差對(duì)系統(tǒng)的影響,而且抗干擾能力差。為此,提出了PID和逆模型相結(jié)合的復(fù)合控制。該控制方法通過(guò)逆補(bǔ)償?shù)窒t滯非線性,通過(guò)PID控制抑制不確定性和未抵消的遲滯非線性。為了進(jìn)一步提高控制精度,增強(qiáng)系統(tǒng)的抗干擾能力,結(jié)合滑模控制的優(yōu)點(diǎn),提出了無(wú)需逆模型的快速Terminal滑?刂品桨,并用Lyapunov函數(shù)證明了系統(tǒng)的全局穩(wěn)定性。通過(guò)實(shí)驗(yàn)驗(yàn)證了所提方法的有效性,且與前面兩種控制方法相比,快速Terminal滑?刂品椒ǖ目刂凭茸罡。
[Abstract]:Micro-nano positioning technology has been widely used in the fields of precision manufacturing, biomedicine and microelectronics, and has become the key technology in modern high and new technology. Piezoelectric ceramic micro-positioning platform is the core device to realize this technology. However, due to the inherent hysteresis nonlinearity and creep characteristics of piezoelectric ceramics, the control accuracy of the micro-positioning platform is reduced and the instantaneous response speed is slowed down. In this paper, the piezoelectric ceramic micro-positioning platform is taken as the research object. In order to eliminate or reduce the influence of hysteresis nonlinearity on positioning accuracy, the modeling and compensation methods of hysteresis nonlinearity of piezoelectric ceramic micro-positioning platform are studied respectively. Firstly, the structure of piezoelectric ceramic micro-positioning platform is introduced. Combined with the research status of piezoelectric ceramic micro-positioning platform at home and abroad, the research results of modeling and compensation methods of hysteresis nonlinearity are summarized. Then, in order to describe the hysteresis nonlinearity of the platform, By comparing and analyzing the advantages and disadvantages of various nonlinear hysteresis models, KP static model is used to describe the hysteresis nonlinearity of piezoelectric ceramic micro-positioning platform, and the cuckoo search algorithm is used respectively. The density parameters in KP static model are identified by particle swarm optimization and cuckoo hybrid optimization algorithm, and a high precision hysteresis model is obtained. The piezoelectric ceramic micro-positioning platform not only has hysteresis characteristics, but also has frequency characteristics. Therefore, the frequency characteristics of the model are analyzed, and the KP rate correlation model is established on the basis of KP static model. Finally, the validity of the proposed model is verified by simulation. The simulation results show that, under the same number of iterations, In order to reduce and eliminate the influence of hysteresis nonlinearity on the control accuracy of platform, the hybrid optimization algorithm of particle swarm optimization and cuckoo bird is used to identify the model with higher accuracy. In this paper, three control schemes are proposed. The first control scheme is feedforward control scheme for hysteresis inverse model compensation. The static inverse model of KP and the inverse model of KP rate correlation are established by recursive method, and the inverse model is used as feedforward controller to carry out open-loop control experiment on piezoelectric ceramic micro-positioning platform, but the inverse model feedforward control belongs to open-loop control. The influence of modeling error on the system can not be eliminated, and the anti-jamming ability is poor. Therefore, a hybrid control method combining PID and inverse model is proposed. The control method cancels the hysteresis nonlinearity by inverse compensation. In order to further improve the control accuracy and enhance the anti-jamming ability of the system, a fast Terminal sliding mode control scheme without inverse model is proposed, which combines the advantages of sliding mode control. The global stability of the system is proved by Lyapunov function, and the effectiveness of the proposed method is verified by experiments. Compared with the two control methods, the fast Terminal sliding mode control method has the highest control accuracy.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273;TN384
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘭少峰;劉升;;布谷鳥搜索算法研究綜述[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年04期
2 田艷兵;王濤;王美玲;;基于廣義PI逆模型的超精密定位平臺(tái)復(fù)合控制[J];機(jī)械工程學(xué)報(bào);2015年02期
3 賀淼;阮奇;鄭曉桂;黃藝玲;張龍;;自適應(yīng)布谷鳥搜索算法[J];計(jì)算機(jī)與應(yīng)用化學(xué);2014年08期
4 馬立;謝煒;劉波;孫立寧;;柔性鉸鏈微定位平臺(tái)的設(shè)計(jì)[J];光學(xué)精密工程;2014年02期
5 張棟;張承進(jìn);魏強(qiáng);田艷兵;趙景波;李現(xiàn)明;;壓電工作臺(tái)的神經(jīng)網(wǎng)絡(luò)建模與控制[J];光學(xué)精密工程;2012年03期
6 陳輝;譚永紅;周杏鵬;張亞紅;董瑞麗;;壓電陶瓷執(zhí)行器的動(dòng)態(tài)模型辨識(shí)與控制[J];光學(xué)精密工程;2012年01期
7 王湘江;王興松;;遲滯動(dòng)態(tài)模型辨識(shí)[J];儀器儀表學(xué)報(bào);2009年05期
8 張新良;譚永紅;;基于動(dòng)態(tài)PREISACH算子的壓電陶瓷動(dòng)態(tài)遲滯智能建模[J];系統(tǒng)仿真學(xué)報(bào);2009年09期
9 徐小平;錢富才;劉丁;王峰;;基于PSO算法的系統(tǒng)辨識(shí)方法[J];系統(tǒng)仿真學(xué)報(bào);2008年13期
10 王湘江;王興松;;基于KP模型的GMA遲滯系統(tǒng)辨識(shí)與補(bǔ)償[J];中國(guó)機(jī)械工程;2008年10期
,本文編號(hào):1546105
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1546105.html