天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

基于交互多模型的機動目標(biāo)跟蹤算法研究

發(fā)布時間:2018-02-20 21:23

  本文關(guān)鍵詞: 機動目標(biāo)跟蹤 非線性濾波 交互多模型 協(xié)方差矩陣交互多模型 出處:《大連海事大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著現(xiàn)代航運業(yè)的快速發(fā)展,水上交通形勢日趨嚴(yán)峻,船舶安全航行問題日益突出,從而對船舶跟蹤性能提出了更高的要求,特別是機動目標(biāo)的穩(wěn)定跟蹤更為關(guān)鍵。為改善目標(biāo)跟蹤可靠性,提高機動目標(biāo)跟蹤精度。本文在傳統(tǒng)交互多模型算法(IMM)的基礎(chǔ)上,展開對機動目標(biāo)跟蹤算法的研究。首先,本文概括了機動目標(biāo)跟蹤的基本原理,介紹了常用的目標(biāo)運動模型。然后在卡爾曼濾波的基礎(chǔ)上重點研究了擴展卡爾曼濾波(EKF)和無跡卡爾曼濾波(UKF)這兩種主要的非線性濾波算法。并設(shè)計出目標(biāo)機動運動場景,仿真對比分析了 EKF算法和UKF算法的機動目標(biāo)跟蹤性能,為后文的改進(jìn)算法提供了理論依據(jù)。其次,為了適應(yīng)目標(biāo)的機動變化,在IMM算法原理及優(yōu)缺點進(jìn)行分析的基礎(chǔ)上,將IMM算法分別與EKF和UKF這兩種非線性濾波算法結(jié)合,研究并設(shè)計了基于擴展卡爾曼濾波的交互多模型算法(IMM-EKF)和基于無跡卡爾曼的交互多模型算法(IMM-UKF)。針對目標(biāo)勻速和轉(zhuǎn)向運動的運動場景,分別對EKF、UKF、IMM-EKF和IMM-UKF四種目標(biāo)跟蹤算法進(jìn)行仿真分析。與傳統(tǒng)算法相比,基于非線性濾波的IMM算法提高了機動目標(biāo)的跟蹤精度。最后,為提高模型概率的準(zhǔn)確率,研究了已有的基于模型概率修正的交互多模型算法(SIMMP),分析了該算法模型概率的修正過程,并根據(jù)基于將當(dāng)前協(xié)方差信息引入模型概率的思想,本文提出了一種基于協(xié)方差矩陣修正概率的交互多模型算法(MIMMP),并對此算法與IMM算法和SIMMP算法進(jìn)行仿真對比分析,證明了本文算法的有效性和優(yōu)越性。
[Abstract]:With the rapid development of modern shipping industry, the situation of water transportation is becoming more and more serious, and the problem of ship safe navigation is becoming more and more prominent, which puts forward higher requirements for the performance of ship tracking. In order to improve the reliability of target tracking and improve the precision of maneuvering target tracking, based on the traditional interactive multi-model algorithm (IMM), the maneuvering target tracking algorithm is studied in this paper. In this paper, the basic principle of maneuvering target tracking is summarized. Based on the Kalman filter, two main nonlinear filtering algorithms, the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are introduced, and the maneuvering moving scene of the target is designed. The simulation results show that the maneuvering target tracking performance of EKF algorithm and UKF algorithm is compared and analyzed, which provides a theoretical basis for the improved algorithm. Secondly, in order to adapt to the maneuvering change of target, the principle of IMM algorithm and its advantages and disadvantages are analyzed. The IMM algorithm is combined with two nonlinear filtering algorithms, EKF and UKF, respectively. This paper studies and designs an interactive multi-model algorithm based on extended Kalman filter (IMM-EKF) and an interactive multi-model algorithm based on unscented Kalman filter (IMM-UKF). Four target tracking algorithms are simulated and analyzed. Compared with the traditional algorithm, IMM algorithm based on nonlinear filtering improves the tracking accuracy of maneuvering target. Finally, in order to improve the accuracy of model probability, the tracking accuracy of maneuvering target is improved. In this paper, the existing interactive multi-model algorithms based on model probability correction are studied, and the process of model probability correction is analyzed. Based on the idea of introducing the current covariance information into the model probability, In this paper, an interactive multi-model algorithm based on the modified probability of covariance matrix is proposed. The simulation results of this algorithm are compared with that of IMM algorithm and SIMMP algorithm. The results show that the proposed algorithm is effective and superior.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN953

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉偉;劉寧;;一種基于UKF交互多模型算法[J];雷達(dá)科學(xué)與技術(shù);2015年03期

2 朱安福;景占榮;高田;羊彥;張安學(xué);;基于UKF的交互多模型算法[J];系統(tǒng)仿真學(xué)報;2009年03期

3 陳曉峰;嵇成新;陳陽;;機動目標(biāo)跟蹤中的多模型算法[J];艦船電子對抗;2008年01期

4 王軍政;沈偉;趙江波;;機動目標(biāo)跟蹤中機動頻率的自適應(yīng)調(diào)整[J];北京理工大學(xué)學(xué)報;2007年01期

5 肖乾;多模型估計理論[J];艦船科學(xué)技術(shù);2005年02期

6 劉昌云,劉進(jìn)忙,陳長興,李松;機動目標(biāo)跟蹤的機動頻率自適應(yīng)算法[J];控制理論與應(yīng)用;2004年06期

7 任少偉,王睿,張平定;基于機動頻率自適應(yīng)的目標(biāo)跟蹤算法[J];空軍工程大學(xué)學(xué)報(自然科學(xué)版);2004年05期

8 黃澤漢,邢昌鳳;基于模糊推理的機動目標(biāo)自適應(yīng)多模型跟蹤算法[J];情報指揮控制系統(tǒng)與仿真技術(shù);2004年05期

9 陳康,嵇成新,顏仲新;雷達(dá)跟蹤機動目標(biāo)的多模型算法研究[J];艦船科學(xué)技術(shù);2004年01期

10 李鴻艷,馮新喜;目標(biāo)跟蹤中的多模型算法發(fā)展綜述[J];電訊技術(shù);2003年02期

相關(guān)博士學(xué)位論文 前1條

1 劉昌云;雷達(dá)機動目標(biāo)運動模型與跟蹤算法研究[D];西安電子科技大學(xué);2014年

,

本文編號:1520057

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1520057.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶df841***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com